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This paper discusses a mean-variance portfolio selection problem under a constant elasticity of variance
model. A backward stochastic Riccati equation is first considered. Then we relate the solution of the
associated stochastic control problem to that of the backward stochastic Riccati equation. Finally,
explicit expressions of the optimal portfolio strategy, the value function and the efficient frontier of
the mean-variance problem are expressed in terms of the solution of the backward stochastic Riccati
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1. Introduction

Portfolio selection problem is an important issue in the theory
and practice of finance. The modern portfolio selection theory can
be traced back to the seminal work of Markowitz [23], where
a mean-variance formulation was developed in a single-period
setting with the Gaussian assumption for the distributions of
individual returns. Ever since then, there has been a growing
interest in extending and generalizing Markowitz’s work. Using
embedding techniques, Li and Ng [20] and Zhou and Li [27] solved
the mean-variance portfolio selection problem analytically in a
multi-period and continuous-time setting, respectively. Recently,
there has been an interest in studying the mean-variance portfolio
selection problem in financial models with random parameters.
See, for example, Lim and Zhou [22], Ferland and Watier [14] and
Chiu and Wong [7], amongst others.

The constant elasticity of variance (CEV) model was first intro-
duced to the financial community by Cox [9]. It may be consid-
ered a type of random-coefficient financial models. An empirical
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advantage of the CEV model is that it can describe the implied
volatility smile observed in option prices data. In the last three
decades, some works have been done in option valuation under
the CEV model. See, for example, Cox and Ross [11], Beckers [2],
Davydov and Linetsky [12] and others. Recently, stochastic control
problems in insurance and finance under the CEV model have at-
tracted some attention. There were some previous works along this
direction such as Xiao et al. [25], Gao [15], Jung and Kim [19], Liang
et al. [21], Zhao and Rong [26], and others. However, most of these
works focused on the utility maximization problems under the CEV
model. It seems that portfolio selection under the CEV model in the
Markowitz mean-variance paradigm may have not yet been well-
explored.

In this paper, we discuss a continuous-time mean-variance
portfolio selection problem with two securities, namely a risk-
free bond and a risky share. The price process of the risky share
is governed by a CEV model. The financial market described by
the CEV model is a complete market with stochastic volatility,
which can be regarded as a particular case of the work with general
random market parameters in Lim and Zhou [22]. We adopt
the stochastic linear-quadratic control approach as in Lim and
Zhou [22] and relate the solution of the mean-variance problem
under the CEV model to a backward stochastic Riccati equation
(BSRE). Although Lim and Zhou [22] established a general theory
of the mean-variance portfolio selection problem with random
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parameters, the solution of the problem depends on solving the
BSRE, which is difficult to solve in closed form when an explicit
structure of random parameters is not specified. By making use
of a particular structure given by the CEV model, a closed-form
solution of the BSRE corresponding to the mean-variance portfolio
selection problem is derived. Explicit expressions of the optimal
portfolio strategy, the value function and the efficient frontier of
the mean-variance problem are then represented in terms of the
solution of the BSRE.

2. Problem formulation

Let 7 be a finite time parameter set [0, T], where T < oo.
As usual, a complete probability space (2, ¥, #) is considered,
where £ is a real-world probability measure and the expectation
with respect to & is denoted as E[-]. Let {W (t)|t € T} be a one-
dimensional standard Brownian motion on (£2, ¥, #). Assume
that F := {F(t)|t € T} is the right continuous, $-complete
filtration generated by {W(t)|t € T}.

For any nonnegative F-adapted process {a(t)|t € T}, let
{A(t)[t € T} be an increasing continuous process defined by
Alt) = fot a’(s)ds,t € T.letn > 0 be a generic constant,
which may be different from line to line. On the filtered probability
space (£2, F, T, ), we denote by OCé(n, a, 7; N) the space of all
real-valued, F-adapted processes {f (t)|t € T} such that ||f||f7 =
E[fOT e O |f (t)|2dt] < oo, by L%%(n, a, T; N) the space of all real-
valued, F-adapted processes {f(t)|t € 7} such that ||f||,27_a =

laf 112 = E[fy a2(0)e™O1f (0)Pdt] < oo, and by £ (n, a, T R)
the space of all real-valued, F-adapted, cadlag processes {f (t)|t €
7} such that ||f||2 . == E[supy.<r " |f(t)|*] < oc. Then

M2, a, TR x R) = (L2°M, @, T;N) N L, a, T; R))
x L3-(n. 0, T 9N,

is aBanach space with the norm || (v, 2) I = Iyl12 ,+ Iy lI2 . +IIz12.
In addition, we denote by €12(7 x Ri*; M) the space of real-valued
continuous functions on 7 x R* with continuous derivative in
the first argument and continuous derivatives up to order 2 in
the second argument, and by ¢1(7; %) the space of continuously
differentiable functions from 7~ to .

We consider a financial market consisting of a risk-free bond
and a risky share. The price process of the risk-free bond {B(t)|t €
7} evolves over time as:

dB(t) = r(t)B(t)dt, B(0) =1, (1)

where r(t) represents the risk-free, instantaneous interest rate at
time t. Assume that there exists an € > 0 such that r(t) > e, for
eacht e 7.

The price process of the risky share {S(t)|t € T} satisfies the
following stochastic differential equation (SDE):

te7T,

ds(t) = S([u(dt + P (Ho (AW ()], te T,

S(0) =s> 0. (2

Here, w(t) is the appreciation rate of the share; o(t) > 0 can
be interpreted as the scale parameter of the share; § is called the
elasticity parameter of the share. Then, S?(t)o (t) represents the
instantaneous volatility of the share at time t. Furthermore, we
require that r(t), u(t), o (t) are deterministic, uniformly bounded
functions of time t.

Throughout this paper, we only consider the case of a negative
elasticity parameter (i.e. 8 < 0) for two reasons. First, as indicated
by Heston et al. [16], there are arbitrage opportunities and asset
price bubbles on both option values and share prices in the case
that 8 > 0. A bubble may be characterized by a price process and,

when discounted, is a local martingale under the risk-neutral mea-
sure but not a martingale (see, for example, Cox and Hobson [10]).
Second, the instantaneous volatility increases as the share price in-
creases in the case of a positive elasticity parameter, which is not
consistent with the empirical evidence of the leverage effect (see,
for example, Christie [8]).

From Lemma 6.4.4.1 in Jeanblanc et al. [17], the zero boundary
is reached almost surely for the CEV model with 8 < 0 and it is an
absorbing state. Consequently, the CEV model with 8 < 0 may be
used to describe default. If we assume that the share price process S
is killed at the first hitting time of zero and is sent to the absorbing
state, the default time is defined as Tp := inf{t > 0|S(t) = 0}.
Indeed, this kind of default might be related to defaults described
by the Merton structural firm value model (see Merton [24]). The
structural model is intuitively appealing since it links defaults to
the firm’s capital structure. However, unlike the reduced-form
approach where default times are totally inaccessible, the default
time Ty is predictable with respect to the underlying filtration
generated by information about the firm’s value. That is, the default
event may be predicted by observing the dynamics of the firm’s
value. This counterfactual feature leads to a discrepancy between
the credit spreads from structural models and the market data
(see Jones et al. [18]). To overcome the predictability of defaults
under the CEV model, one may consider adding a jump-to-default
part in the CEV model (2) as in Campi et al. [5] or Carr and
Linetsky [6]. Under such a jump-to-default CEV model, defaults
could be either expected (predictable) or unexpected (totally
inaccessible) depending on whether they are triggered by diffusion
and jump terms, respectively. This may provide a possible way
to combine the advantages of both structural and reduced-form
models for credit risk analysis.

In what follows, we consider the situation where an economic
agent invests his wealth in the financial market as described by
Egs. (1) and (2). Let w(t) be the amount of the agent’s wealth
invested in the risky share at time t. Here 7w (-) = {m(t)|t € T}
is called a portfolio strategy of the agent. Let X(t) := X™ (t) be the
total wealth of the agent at time t corresponding to the portfolio
strategy 7 (-). Suppose that the portfolio strategy is self-financed.
Then the wealth process {X(t)|t € T} of the agent is governed by
the following SDE:

dX(6) = [r(OX(®) +m () (1(t) — r(0)]de
+rOSPtot)dW(t), teT, (3)
X(0) =x.

Definition 2.1. A portfolio strategy 7 (-) is said to be admissible if
(1) 7 (+) is F-adapted; (2) E[fOT T2(t)S? (t)dt] < oo; (3) the SDE
in Eq. (3) has a unique strong solution X (-) corresponding to 7 (-).
The set of all admissible portfolio strategies is denoted by +.

The agent’s objective is to find an admissible portfolio 7 (-) € A
to minimize the variance of terminal wealth for a given level of the
expected terminal wealth. Finding such a portfolio 7 (-) is referred
to as the mean-variance portfolio selection problem. Specifically,
as in the literature, the mean-variance portfolio selection problem
is formulated as follows:

Definition 2.2. The mean-variance portfolio selection problem
is the following constrained stochastic optimization problem,
parameterized by d € 9

min_J (%5 7(9) = ELX(T) - d)*],

E[X(T)] = d. (4)

subject to {(X('L 7 (+)) satisfy (3).
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