
Operations Research Letters 42 (2014) 367–373

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

A continuous knapsack problem with separable convex utilities:
Approximation algorithms and applications
Retsef Levi, Georgia Perakis ∗, Gonzalo Romero
Sloan School of Management, Massachusetts Institute of Technology, E62-565, Cambridge, MA 02142, United States

a r t i c l e i n f o

Article history:
Received 6 September 2013
Received in revised form
12 June 2014
Accepted 13 June 2014
Available online 20 June 2014

Keywords:
Knapsack
Subsidies
Cournot competition

a b s t r a c t

We study a continuous knapsack problem with separable convex utilities. We show that the problem is
NP-hard, and provide two simple algorithms that have worst-case performance guarantees. We consider
as an application a novel subsidy allocation problem in the presence of market competition, subject to
a budget constraint and upper bounds on the amount allocated to each firm, where the objective is to
minimize the market price of a good.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We study a continuous knapsack problem, where the objective
is to maximize the sum of separable convex utility functions. We
denote this problemby (CKP). Beyond generalmethods for concave
minimization, see for example [1], there is not much literature on
this class of problems. An exception is [10], and their algorithm to
find localminima. A comprehensive reviewof the relatednonlinear
knapsack problem literature is presented in [3]; however, in
most cases, the objective function considered in this literature is
concave. On the other hand, for any given tolerance ϵ > 0, a fully
polynomial time approximation scheme (FPTAS) is an algorithm
that generates a solution which is within a factor (1 − ϵ) of being
optimal, while the running time of the algorithm is polynomial in
the problem size and 1/ϵ. Burke et al. [4] provide a tailored FPTAS
for a minimization variant of a continuous knapsack problem, in
the context of allocating procurement to suppliers. The knapsack
problem we study here is a maximization problem, hence the
results from [4] do not apply. Finally, [7] develop a general purpose
FPTAS for a class of stochastic dynamic programs, which applies to
general nonlinear knapsack problems. In contrast, our main goal
in this paper is to study the performance of simple algorithms
for problem (CKP), as well as to introduce a novel application of
continuous knapsack problems into a subsidy allocation problem
in the presence of market competition, subject to a budget

∗ Corresponding author.
E-mail addresses: retsef@mit.edu (R. Levi), georgiap@mit.edu (G. Perakis),

gromeroy@mit.edu (G. Romero).

constraint and upper bounds on the amount allocated to each firm,
where the objective is to minimize the market price of a good.

The main contributions of this paper are two-fold. First, we
develop two algorithms that are computationally and conceptually
simple, such that they can be used in practical applications. We
show that these algorithms have good worst-case performance
guarantees for problem (CKP). Moreover, we identify special
settings where these simple policies are actually optimal. Second,
we show that problem (CKP) characterizes a novel subsidy
allocation problem, and that the simple algorithms thatwedevelop
admit a practical interpretation.

2. Problem formulation

Consider n items indexed by i ∈ {1, . . . , n}. For each i, let xi be
the non-negative quantity of item i, and let fi(xi) be the resulting
reward. Moreover, fi(xi) is assumed to be convex. The quantity of
item i cannot exceed a given upper bound ui, and the total amount
of all items is bounded by the capacity of the knapsack, denoted
by B. Moreover, both B and ui are assumed to be integers. We are
interested in the following continuous knapsack problem

max F(x) ≡

n
i=1

fi(xi)

(CKP) s.t.
n

i=1

xi ≤ B

0 ≤ xi ≤ ui ∀ i.

The objective function is convex over the feasible set, which is a
bounded polyhedron. Therefore, the existence of an extreme point

http://dx.doi.org/10.1016/j.orl.2014.06.007
0167-6377/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2014.06.007
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2014.06.007&domain=pdf
mailto:retsef@mit.edu
mailto:georgiap@mit.edu
mailto:gromeroy@mit.edu
http://dx.doi.org/10.1016/j.orl.2014.06.007


368 R. Levi et al. / Operations Research Letters 42 (2014) 367–373

optimal solution follows from concave minimization theory, see
for example [1].

The next one is our first result

Proposition 1. Problem (CKP) is NP-hard.

Proof. The proof is a reduction from the subset sum problem,
which is well known to be NP-complete, see [8].

Consider an arbitrary instance of the subset sum problem,
where given a set of n positive integers {u1, u2, . . . , un}, and a
positive integer B, the question is whether there exists a subset
J ⊆ {u1, u2, . . . , un} that sums to B.

Now consider the following instance of problem (CKP): let ui
be the upper bound on xi for each item i, B be the capacity of the
knapsack and f (xi) = xi(xi −ui)+xi be the convex reward for each
item i. It follows that this instance of problem (CKP) can be written
as

max
n

i=1

xi −
n

i=1

xi(ui − xi)

s.t.
n

i=1

xi ≤ B

0 ≤ xi ≤ ui ∀ i ∈ {1, . . . , n}.

Note that B is an upper bound on the optimal objective value of
this problem. Moreover, this upper bound is attained if and only if
there exists a subset J ⊆ {u1, u2, . . . , un} that sums to B.

Hence, if we can solve problem (CKP) in polynomial time, it
follows that we can solve the subset sum problem in polynomial
time.

The proof of Proposition 1 is in the same spirit of [12], who
shows the NP-hardness of non-convex quadratic programming,
among other problems.

We nowmake a couple of remarks that will make the rest of the
exposition clearer.

Remark 1. There is no loss of generality in assuming that, for each
i ∈ {1, . . . , n}, the functions fi(xi) are positive and non decreasing.

Specifically, we can pre-process the problem data replacing fi(xi)
by the amount max {fi(xi), fi(0)}, for each i and xi, obtaining non
decreasing functions without changing the problem. Similarly, by
adding a constant K > mini{fi(0)} to each of the functions fi(xi)we
obtain positive functions.

Remark 2. There is no loss of generality in assuming that, for each
i ∈ {1, . . . , n}, ui ≤ B.

Specifically, if any upper bound ui is larger than the capacity B, then
it follows that any feasible solution will allocate at most B to item
i. Hence, we can pre-process the data and replace ui by min{B, ui},
for each i, without changing the problem.

Having established the NP-hardness of problem (CKP), we now
focus on simple algorithms with a guaranteed performance, and
their practical interpretation.

2.1. A simple 1/2-approximation algorithm

We next describe a 1/2-approximation algorithm for problem
(CKP). Specifically, we will show that intuitive ideas perform well
in this model. Namely, the best solution between (i) allocating the
capacity greedily to the items with the fastest rate of increase in
their utility function, and (ii) allocating the capacity greedily to
the items with the largest absolute increase in their utility function,
attains an objective value that is at most half the value of the
optimal objective value.

This algorithm is a generalization of the well known 1/2-
approximation algorithm for the 0/1 knapsack problem. The latter
is attained by the best solution between greedily picking the
objects by decreasing ratio of profit to size, and picking the most
profitable object, see for example [15].

Consider first idea (i). We denote the resulting solution by xrate.
Essentially, xrate is the result of a greedy procedure with respect to
fi(ui)−fi(0)

ui
, which is the rate of increase in the utility function of item

i, assuming that xi is set to its upper bound.

Algorithm 1 Compute xrate

xrate ⇐ 0⃗
Let λi =

fi(ui)−fi(0)
ui

, for each i
Sort indexes by decreasing λi

Find î s.t.
î−1

i=1 ui ≤ B and
î

i=1 ui > B
xratei ⇐ ui, for each i ≤ î

xrate
î

⇐ B −
î−1

i=1 ui

On the other hand, consider idea (ii). We denote the resulting
feasible solution by xmax. Essentially, xmax is the result of a greedy
procedure with respect to fi(min(ui, B̃)), which is the absolute
increase in the utility function of item i, when allocating the
minimum between the remaining capacity B̃, and its upper bound.
In case of a tie, fi(0) is used as a tie-breaker.

Algorithm 2 Compute xmax

B̃ ⇐ B
xmax

⇐ 0⃗
while B̃ > 0 do

Let S1 =


i | fi


min


ui, B̃


≥ fj


min


uj, B̃


, for each

j : xmax
j = 0


Let S2 =


i ∈ S1 | fi(0) ≤ fj(0), for each j ∈ S1


Select i ∈ S2
B̃ ⇐ B̃ − min


ui, B̃


xmax
i ⇐ min


ui, B̃


end while

It is not hard to see that each algorithm, considered separately,
can be made to perform arbitrarily bad. Examples drawn from a
0/1 knapsack problem are sufficient.

In order to show a worst-case performance guarantee for
problem (CKP), we need an upper bound on its optimal objective
value, as provided in the following proposition.

Proposition 2. Let x∗ be an optimal solution to problem (CKP).
Algorithm 1 provides the following upper bound,

F(x∗) ≤ F(xrate) + fî(0) − fî(x
rate
î

) +
fî(uî) − fî(0)

uî
xrate
î

where F(x) =
n

i=1 fi(xi).

Proof. Let us relax the knapsack constraint in problem (CKP) with
an associated Lagrangemultiplierλ, to obtain the following relaxed
optimization problem,

max λB +

n
i=1

(fi(xi) − λxi)

s.t. 0 ≤ xi ≤ ui ∀ i.



Download English Version:

https://daneshyari.com/en/article/10523947

Download Persian Version:

https://daneshyari.com/article/10523947

Daneshyari.com

https://daneshyari.com/en/article/10523947
https://daneshyari.com/article/10523947
https://daneshyari.com

