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Abstract

We propose a scenario decomposition algorithm for stochastic 0-1 programs. The algorithm recovers
an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving sce-
nario subproblems. The scheme is applicable to quite general problem structures and can be implemented
in a distributed framework. Illustrative computational results on standard two-stage stochastic integer
programming and nonlinear stochastic integer programming test problems are presented.
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1 Introduction

We consider stochastic programs of the following form

min{E[f(x, ξ)] : x ∈ X ⊆ {0, 1}n}, (1)

where ξ is a random vector with support Ξ and known distribution P , and the expectation in (1) is with
respect to P . An important example of (1) is the class of two-stage stochastic programs with 0-1 first stage
variables with

f(x, ξ) = c>x+ min{φ(y(ξ), ξ) : y(ξ) ∈ Y (ξ, x)}
where, for realization ξ of ξ, y(ξ) is the second stage decision vector, φ(·, ξ) is the second stage objective
function, and Y (ξ, x) is the second stage constraint system depending on the first stage decision vector
x. We assume that the random vector ξ has a finite support, i.e. Ξ = {ξ1, . . . , ξN}, where each ξi for
i ∈ {1, . . . , N} is referred to as a scenario. We can then rewrite (1) as

min

{
N∑

i=1

fi(x) : x ∈ X ⊆ {0, 1}n
}
, (2)

where fi(x) = pif(x, ξi) and pi is the probability mass associated with scenario i.
A popular approach for solving (2) is the so-called scenario or dual decomposition method. By making

copies of the decision variables x, problem (2) can be reformulated as

min

{
N∑

i=1

fi(xi) : xi ∈ X ∀ i,
N∑

i=1

Aix
i = h

}

where the equations
∑N
i=1Aix

i = h enforce the nonanticipativity constraints x1 = · · · = xN . The La-
grangian dual problem by dualizing these nonanticipativity constraints take the form

max
λ

{
v(λ) :=

N∑

i=1

min
{
fi(xi) + λ>Aix

i : xi ∈ X
}
− λ>h

}
, (3)
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