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a b s t r a c t

In a landmark paper from1986, Kawaguchi and Kyan show that scheduling jobs according to ratiosweight
over processing time – also known as Smith’s rule – has a tight performance guarantee of (1 +

√
2)/2 ≈

1.207 for minimizing the weighted sum of completion times in parallel machine scheduling. We prove
the counterintuitive result that the performance guarantee of Smith’s rule is not better than 1.243 when
processing times are exponentially distributed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Minimizing the weighted sum of completion times on m par-
allel, identical machines is an archetypical problem in the theory
of scheduling. In this problem, we are given n jobs which have to
be processed non-preemptively on m machines. Each job j comes
with a processing time pj and a weight wj, and when Cj denotes
job j’s completion time in a given schedule, the goal is to com-
pute a schedule that minimizes the total weighted completion
time


j wjCj. In the classical 3-field notation for scheduling prob-

lems [5], the problem is denoted by P| |


wjCj. For a single ma-
chine, a simple exchange argument shows that scheduling the jobs
in order of non-increasing ratios wj/pj gives the optimal sched-
ule [15]. Greedily scheduling the jobs in this order on parallel ma-
chines is known asWSPT rule, weighted shortest processing times
first, or Smith’s rule. Onparallel identicalmachines,WSPT is known
to be a 1

2 (1 +
√
2)–approximation, and this bound is tight [8]. The

computational tractability of the problem was finally settled by
showing the existence of a PTAS [14], given that the problem is
strongly NP-complete ifm is part of the input [3,4].

In this paper, we consider the stochastic variant of the problem.
It is assumed that the processing time pj of a job j is not known in
advance. It becomes known upon completion of the job. Only the
distribution of the corresponding random variable Pj, or at least its
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expectation E

Pj


, is given beforehand. More specifically, we as-

sume that the processing times of jobs are governed by indepen-
dent, exponentially distributed random variables. That is to say,
each job comes with a parameter λj > 0, and the probability that
its processing time exceeds t equals

P

Pj > t


= e−λjt .

We denote this by writing Pj ∼ exp(λj). Exponentially distributed
processing times somehow represent the cream of stochastic
scheduling, in particular when juxtaposing stochastic and deter-
ministic scheduling: the exponential distribution is characterized
by the memoryless property, that is,

P

Pj > s + t|Pj > s


= P


Pj > t


.

So for any non-finished job it is irrelevant how much processing
it has already received. This is obviously a decisive difference to
deterministic scheduling models, and puts stochastic scheduling
apart. Next to that, the model with exponentially distributed pro-
cessing times is attractive because it makes the stochastic model
analytically tractable.

In the stochastic setting with the objective to minimize
E[


wjCj], the analogue of Smith’s rule is greedily scheduling the

jobs in order of non-increasing ratios wj/E

Pj


, also called WSEPT

(weighted shortest expected processing time first) [12]. For a sin-
glemachine, this is again optimal [13]. For parallel machines, it has
been shown that the WSEPT rule achieves a performance bound
of (2 − 1/m) within the class of all non-anticipatory stochastic
scheduling policies [11]. Here, the considered metric is the ex-
pected performance ofWSEPT relative to that of an (unknown) op-
timal non-anticipatory scheduling policy. We refer to [10] for the
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Fig. 1. Two different WSPT schedules, one with optimal objective value v∗ on the left, and one with suboptimal value v on the right, respectively.

precise definition on non-anticipatory stochastic scheduling poli-
cies. For the purpose of this paper, it suffices to know that non-
anticipatory stochastic scheduling policies are, at any given time
t , only allowed to use information that is available at that time t .
Obviously, this is also the case for WSEPT, as the distributions Pj,
thus particularly expected processing times E


Pj


are even avail-

able beforehand.
The major purpose of this paper is to establish the first lower

bound for the (2 − 1/m) performance guarantee of [11] for expo-
nentially distributed processing times. In fact, we are not aware of
any result in this direction. The only result known to us is an in-
stance showing that WSEPT can miss the optimum by a factor 3/2,
but then for arbitrary processing time distributions [16, Ex. 3.5.12].
Our main result is the following.

Theorem 1. When scheduling jobs with exponentially distributed
processing times on parallel, identical machines in order to minimize
E[


wjCj], the performance guarantee of Smith’s rule is no better

than α with α > 1.243.

To obtain our result, we carefully adapt and analyse the worst-
case instance of [8]. Note that the originality of this result lies in the
fact that 1.243 > 1

2 (1+
√
2) ≈ 1.207.Hence, stochastic scheduling

with exponentially distributed processing times has worse worst-
case instances than deterministic scheduling. This resultmay seem
counterintuitive, as Pinedo correctly claims the following.

‘‘It is intuitively acceptable that a deterministic problemmay be
NP-hard while its counterpart with exponentially distributed
processing times allows for a very simple policy to be opti-
mal’’ [12].

An example for this intuition is given by the problem to min-
imize the makespan on parallel identical machines: while the
problem is NP-hard in deterministic scheduling, the version with
exponentially distributed processing times is solved optimally by
the LEPT policy (longest expected processing times first) [17]. For
the minsum objective considered in this paper, the picture is as
follows. For unit weights where wj = 1, the SPT rule is optimal for
minimizing


j Cj in the deterministic setting [12], and also SEPT

(shortest expected processing time first) is optimal for minimizing
E[


j Cj ]when processing times are exponentially distributed [1].

For exponentially distributed processing times and weights that
are agreeable in the sense that there exists an ordering such that
w1 ≥ · · · ≥ wn and w1λ1 ≥ · · · ≥ wnλn, scheduling the jobs in
order 1, 2, . . . , n is optimal [7], while the corresponding determin-
istic problem is NP-hard, and in particular, WSPT is not optimal.

That is to say, there are examples where the stochastic version
with exponentially distributed processing times is computation-
ally easier than the deterministic version of the same problem,

under the realm of minimizing expected performance. Our result
shows that with arbitrary weights, the situation is different. Next
to this qualitatively new insight, our analysis also sheds light on
phenomena in stochastic schedulingwhich are interesting on their
own.

The paper is organized as follows. In Section 2,we briefly review
and visualize the worst-case instance presented in [8]. We explain
the intuition behind the stochastified instance of [8] in Section 3.
Then we derive four technical lemmas about scheduling jobs with
exponentially distributed processing times, and finally prove the
claimed lower bound for the performance of Smith’s rule. Finally,
Section 4 contains our conclusions.

2. Recap of the Kawaguchi and Kyan instance

We briefly summarize the instance from [8] that achieves the
bound (1 +

√
2)/2 for deterministic scheduling, as the instance

we propose is a stochastic variant thereof.
Let n be the number of jobs and m the number of machines.

Denote the processing time of job j by pj and its weight by wj. The
(deterministic) instance is then given by

m = h + ⌊(1 +
√
2)h⌋

n = mk + h
pj = wj = 1/k for 1 ≤ j ≤ mk

pj = wj = 1 +
√
2 for mk + 1 ≤ j ≤ mk + h.

Here, h denotes an integer, and k is an integer that can be di-
vided by ⌊(1 +

√
2)h⌋. Notice that wj/pj = 1 for all jobs j. This

means that any list schedule is in fact a WSPT schedule. Let us re-
fer to the first mk jobs as short jobs, and the remaining h jobs as
long jobs.

Let v∗ be the total weighted completion time of a schedule
where the long jobs are processed first, and v be the total weighted
completion time of a schedule inwhich all short jobs are processed
first. Fig. 1 depicts these two schedules. The schedule on the left of
Fig. 1 has objective value v∗. Here the last jobs of length 1/k finish
at time 1 + h/⌊(1 +

√
2)h⌋ ≈ 1.4 (for large values of h and k). The

schedule on the right of Fig. 1 has value v, and it finishes the last
jobs of length 1/k exactly at time 1. In Fig. 1 we used h = 5 and k =

32. It can be verified (see [8]) that v = (1+
√
2)(2+

√
2)h+(m/2)

(1 + 1/k) and v∗
= (1 +

√
2)2h + (m/2)(m/⌊(1 +

√
2)h⌋ + 1/k).

The ratio v/v∗ then tends to (1 +
√
2)/2 as h → ∞ and k → ∞.

3. The stochastic Kawaguchi and Kyan instance

We find it particularly instructive to consider the stochastic
analogue of the instance presented by Kawaguchi and Kyan [8],
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