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a b s t r a c t

This paper develops a real time algorithm which identifies times of emotional discontinuity as reflected
in social media. The paper formulates the optimization problem to solve, develops an algorithm to solve
it using dynamic programming, and illustrates the new method by analyzing mood shifts reflected in
380,000 Twitter messages related to one of the world’s most popular soccer teams, Manchester United,
during their 2011–12 season.

© 2013 The Author. Published by Elsevier B.V. All rights reserved.

1. Introduction

Although physical objects follow well understood Newtonian
physics and are free of discontinuous dynamics, emotional in-
tensity dynamics evolve continuously with unknown dynamics
until a tipping point or external event triggers a discontinuity.
Classical tracking [6] assumes underlying continuous dynamics, an
assumption that is structurally inappropriate when tracking emo-
tions expressed in social media. Classical statistical control process
(SPC) [7] methods, on the other hand, assume a known underlying
continuous dynamics with known parameters and are designed to
statistically detect discontinuities. However, SPC does not simulta-
neously estimate the dynamics while seeking to detect the discon-
tinuities.

Motivated by the deficiency of applicable models, this paper
proposes a more nuanced dynamic. Specifically, it hypothesizes
a continuous dynamic with unknown parameters interrupted by
jumps occurring at unexpected times followed by resumed con-
tinuity independent of the dynamics before the jump. The dis-
continuous jumps might be viewed as emotional resets caused by
significant external events. Analysis seeking to track such systems
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amid noisy measurements must simultaneously smooth the noisy
measurements while identifying the times of the discontinuity.

This section first formally presents a dynamical model along
with a motivating example which will be explored in more detail
in Section 4. This section also presents an exhaustive search algo-
rithm to analyze such data. Section 2 describes a mathematically
equivalent algorithm which is recursive and therefore lends itself
to processing data in real time. Section 3 presents a number of ex-
tensions to the algorithm. Section 4 applies the algorithm to track-
ing emotions inferred from twitter messages related to the soccer
team,Manchester United.

More specifically, this paper partitions L time series xℓ
t for t =

1, 2, . . . , T and ℓ = 1, 2, . . . , L into M consecutive regions with
breakpoints at times M = {m0,m1, . . . ,mM}, where m0 = 0 and
mM = T , which ismost consistentwith a specifiedmodel of the dy-
namics. If, for example, the time series arise from piecewise linear
dynamical functions, then, for j = 1, 2, . . . ,M , in the jth partition,
the ℓth time series xℓ

t ≈ αℓ
j + tβℓ

j for t = mj−1 +1, . . . ,mj. For this
example, this paper identifies the most consistent value of mj, α

ℓ
j ,

and βℓ
j for j = 1, 2, . . . ,M − 1 and ℓ = 1, . . . , L.

Before formulating and solving this problem, consider the fol-
lowing example. Fig. 1 illustrates data from 380,000 twitter mes-
sages corresponding to noisy measurements of the intensity of
expressed anger, sadness, and ‘positive emotions’ (as defined by
the LIWC dictionary [8,9,11]) for each day between September 1,
2011 and May 15, 2012. Here, there are 3 time series correspond-
ing to the 3 different emotions, i.e., L = 3. Fig. 1, while in principle
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Fig. 1. Raw mood data from 380,000 Twitter messages having the hashtag #mufc.

Fig. 2. Mood shift analysis of the Twitter messages showing a breakpoint on
2/6/2012 and 5/14/2012.

informative, is hard to interpret or glean knowledge from. Suppose
each emotion follows a piecewise linear dynamical function be-
tween breakpoint times and discontinuously changes at the break-
point times. Then, using the analysis and modeling assumptions of
this paper, as discussed inmore detail in Section 4, the data of Fig. 1
is most consistent with (i) there being M = 3 breakpoints on the
dates illustrated in Fig. 2 and (ii) the smoothed linear dynamics of
the three emotions between each of the three breakpoints are the
equations corresponding to the straight lines illustrated in Fig. 2.
Section 4 discusseswhy Fig. 2might reasonably be considered con-
sistent with real events associated with the breakpoint dates.

Proceeding more formally with more generality, suppose

x⃗ℓ
j (m⃗) ≈ Ajθ⃗

ℓ
j , (1.1)

where

x⃗ℓ
j (m⃗) = (xℓ

mj−1+1, x
ℓ
mj−1+2, . . . , x

ℓ
mj

)T ,

and Aj might represent a D degree polynomial model, e.g.,

Aj =


1 mj−1 + 1 · · · · · · (mj−1 + 1)D

1 mj−1 + 2 · · · · · · (mj−1 + 2)D

. . . · · · · · · · · · · · ·

1 mj · · · · · · mD
j

 ,

(or perhaps instead amodel with periodic functions), where D = 0
and D = 1 are the cases of most interest. Here, θ⃗ ℓ

j is an unknown
vector to be determined and the dependency of Aj on m⃗ and D are
suppressed for notational clarity.

A measure of the consistency of the model in the jth breakpoint
region is defined as

d(mj−1,mj, w⃗) = w⃗T r⃗j(m⃗), (1.2)

where r⃗j(m⃗) is an L × 1 vector whose ℓth component is

[r⃗j(m⃗)]ℓ = min
θ⃗ℓ
j

x⃗ℓ
j (m⃗) − Ajθ⃗

ℓ
j

2
P
, (1.3)

w⃗ = (w1, w2, . . . , wL) represent weights reflecting the rel-
ative importance of the different time series with


ℓ wℓ = 1,

P = diag(p1, p2, . . .) reflects the relative importance of the data
points within a time series (due to the discounting of time or due
to differing precision of themeasurements of that data perhaps in-
duced by a differing number of underlying raw measurements for

some data points), and ∥x∥P =


t ptx

2
t . Eq. (1.3) could be inter-

preted as finding the maximum likelihood estimate for the case of
xℓ
j ∼ N (Ajθ⃗

ℓ, P).
Finding each component of r⃗j(m⃗) entails solving a simple linear

regression: the minimum θ⃗ ℓ in (1.3) is

θ̂ ℓ
j = (AT

j PAj)
−1AT

j Px⃗
ℓ
j (m⃗) (1.4)

if the dimension of x⃗ℓ
j (m⃗),mj − mj−1, is more than D. If not, there

are an infinite number of ways r⃗j(m⃗) can achieve 0 in (1.3) and a
variation of (1.4) must be used.

For the special case of finding a piecewise constant function in
each breakpoint region, i.e., D = 0, if P = I, then (1.2) and (1.4)
simplify to θ̂ ℓ

j =
mj

t=mj−1+1 x
ℓ
t /(mj −mj−1), i.e., the average value,

and d(mj−1,mj, w⃗) =
L

ℓ=1 wℓ

mj
t=mj−1+1(x

ℓ
t − θ̂ ℓ

j )
2

, i.e., a

weighted sample variance.
More generally, assuming P is diagonal, D < M , then from

(1.2)–(1.4) computing d(mj−1,mj, w⃗) requires O(LT 2) multiplica-
tions as the evaluation of norm in (1.3) requires O(T 2) andmust be
computed for L different values of j.

A measure of the quality of the model over all of the breakpoint
regions is, for i = M ,

Si(m⃗, w⃗) =

i
j=1

d(mj−1,mj, w⃗). (1.5)

Hence, finding the best breakpoints, m⃗∗(w⃗), entails solving

m⃗∗(w⃗) = arg min
m⃗∈M

SM(m⃗, w⃗), (1.6)

where

M = {(m0,m1, . . . ,mM) : 0 = m0 ≤ m1 ≤ mM = T }.

Eq. (1.5) requiresO(MLT 2)multiplications since it entails evalu-
ating O(M) values of jwhich each requiring O(LT 2)multiplications
to evaluate (1.4). Hence, (1.6) could be computed using an exhaus-
tive search requiring O(MLTM) multiplications. Note that (1.6) is
equivalent to

m⃗∗(w⃗) = arg min
m⃗∈M


j


ℓ

wℓ min
θ⃗ℓ
j

x⃗ℓ
j (m⃗) − Ajθ⃗

ℓ
j

2
P


.

2. A fast recursive algorithm for finding the breakpoints

While the exhaustive search approach (1.6) entails computing
the measure Si(m⃗, w⃗) for all O(TM) possibilities and finding a
faster recursive approach is possible using the following dynamic
programming argument motivated by [4] which, in turn draws
on [2,5].
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