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In this paper, an inexact proximal point algorithm concerned with the singularity of maximal monotone
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1. Introduction

The theory of maximal monotone operators provides a powerful
general framework for the study of convex programming problems
and variational inequalities. A basic problem in the theory of
maximal monotone operators is to find x € R" such that 0 € T(x),
where T is a multivalued maximal monotone operator from R"
to itself. There is an extensive literature concerning this classical
problem (see, for example, [10,23,28,27,26,33]).

In this paper, we will extend an inexact proximal point
algorithm with a relative error tolerance from Euclidean spaces
to Hadamard manifolds. Thus, we start with an introduction of
related inexact proximal point algorithms on Euclidean spaces. The
proximal point algorithm is one of the most important methods for
solving the original problem, which, starting with any vector x° €
R", iteratively updates x**! conforming to the following recursion

0 € o T(X*F1) 4 X1 — XK, (1.1)

where {c,} C [c,+00),c > 0, is a sequence of scalars. How-
ever, as pointed out in [23,10], the ideal form of the method is of-
ten impractical, since in many cases, solving problem (1.1) exactly
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is either impossible or as difficult as solving the original problem
0 € T(x).In[23], Rockafellar gave an inexact variant of the method

e e TR + 7 — &k, (1.2)

where {e*} is regarded as an error sequence. This method is called
an inexact proximal point algorithm. Rockafellar [23] provided the
following two classes of error criteria:

+o00
el < me with > "y < o, (13)
k=0
and
+o00
el < ml® — ¥| - with ) "y < +oo. (1.4)
k=0

Under suitable assumptions and letting x**! = x¥, Rockafellar [23]
proved the global convergence result and locally linear rate of con-
vergence, respectively. Since then, the summability of errors or
error factors has been the standard assumption for ensuring the
convergence of inexact proximal and proximal-like methods. The
error criterions (1.3) and (1.4) can be seen as a absolute error and
a relative error, respectively.

From the point of view of numerical analysis, relative errors are
easier to estimate and analyze. Therefore, some researchers con-
centrated their attention on the inexact proximal point algorithms
with relative errors. Solodov and Svaiter proposed the following
two relative error tolerances:

ekl < nlI®* — x| withn € [0, 1) (1.5)


http://dx.doi.org/10.1016/j.orl.2013.08.003
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2013.08.003&domain=pdf
mailto:nanjinghuang@hotmail.com
mailto:njhuang@scu.edu.cn
http://dx.doi.org/10.1016/j.orl.2013.08.003

G.-j. Tang, N.-j. Huang / Operations Research Letters 41 (2013) 586-591 587

in [26], and
el < nmax{c, [V ], I¥ — %[} withy € [0, 1)

and v* e T(XY) (1.6)

in [27], respectively. Note that the error factor » in both relative er-
ror tolerances above can be a constant in [0, 1). As a consequence,
from the point of view of computation, (1.5) and (1.6) are more
attractive than (1.4). However, from two examples supplied by
Solodov and Svaiter (see, [26,27]), we know that the traditional in-
exact proximal point algorithm (i.e., letting x**! := %*) may not
converge under the relative error tolerances (1.5) and (1.6). To en-
sure the convergence of the proximal point algorithms under (1.5)
and (1.6), either extragradient step [26] or projection step [27] was
required. Therefore, the two methods proposed by Solodov and
Svaiter [26,27] were named as hybrid extragradient-proximal algo-
rithm and hybrid projection-proximal algorithm, respectively.

Later, without adding an additional extragradient or projection
step to the algorithm, Han and He [10] introduced the following
error criterion:

o0

1] < il — X4 with Y " nE < +oc.
k=0

It is clear that the error criterion (1.7) is weaker than the one (1.4).

The extension to Riemannian manifolds of the concepts and
techniques that fit in Euclidean spaces is natural and nontrivial.
Actually, in recent years a large number of researchers have been
making great efforts to this topic (see, for example, [1-9,13-15,12,
16,18,17,19,21,22,20,32,11,31,29,30]).

In particular, Li et al. [ 13] studied the proximal point algorithm
for singularities (solutions of the inclusion 0 € A(x)) of a maximal
monotone vector field A on a Hadamard manifold M, which
extends the earlier results of Rockafellar [23] from Euclidean
spaces to Hadamard manifolds. Its iterative scheme is as follows:
given x® € M and {c;} C [c, +00), ¢ > 0, define x**! such that

0 € QAKX —expyl, x-. (1.8)

Up to now, most of the proximal point algorithms on Rieman-
nian manifolds are exact versions (see, for example, [13,8,4,22,20,
30]). However, since the proximal point algorithms are implicit
methods in essence, different from projection-type methods, the
cost of solving subproblems exactly is quite expensive at each
iteration step. As mentioned by Quiroz and Oliveira [20], for a com-
putational implementation, it is important to analyze the conver-
gence of the algorithm with an inexact iteration. Recently, Wang
and Lépez [31] proposed a modified proximal point algorithm on
Hadamard manifolds, which extended the corresponding results of
Xu [33] to Hadamard manifolds. The method consists of proximal
step and Halpern’s iteration, where the proximal step is an inex-
act one with the standard error criterion (1.3) (see Algorithm MP
and its variant of [31]). As discussed above, when applying inexact
proximal point algorithms for solving related problems, we prefer
the relative error tolerance to the absolute one. However, to the
best of our knowledge, we cannot find any inexact proximal point
algorithm with a relative error tolerance on Riemannian manifolds.

Inspired and motivated by the research works above, in this pa-
per, we extend an inexact proximal point algorithm with the rel-
ative error tolerance proposed by Han and He [10] from Euclidean
spaces to Hadamard manifolds. Under suitable assumptions, we
prove the sequence generated by the proposed method converges
to the singularity of maximal monotone vector fields on Hadamard
manifolds. Since the sequence generated by the proposed method
is not Fejér (or quasi Fejér) convergent to the solution set of the
problem, our techniques in this paper are mostly different with the
previous ones for dealing with the Fejér (or quasi Fejér) convergent
sequence on Hadamard manifolds. Moreover, we give an applica-
tion to the optimization problem on Hadamard manifolds, which
also generalizes and improves the corresponding results of Ferreira
and Oliveira [8] and Li et al. [13].

(1.7)

2. Preliminaries

In this section, we recall some fundamental definitions, proper-
ties and notation of Riemannian manifolds, which can be found in
any textbook on Riemannian geometry, for example, [24].

Let M be a connected m-dimensional manifold and let x € M.
We always assume that M can be endowed with a Riemannian
metric to become a Riemannian manifold. The tangent space of
M at x is denoted by T,M. We denote by (-, -), the scalar product
on T,M with the associated norm || - ||, where the subscript x is
sometimes omitted. The tangent bundle of M is denoted by TM =
Uxenm TxM, which is naturally a manifold. Given a piecewise smooth
curve y : [a,b] — M joining x toy (i.e. y(a) = xand y (b) = y),
we can define the length of y by I(y) = fab [ly’(t)||dt. Then the
Riemannian distance d(x, y), which induces the original topology
on M, is defined by minimizing this length over the set of all such
curves joining x to y.

Let V be the Levi-Civita connection associated with the
Riemannian metric. Let y be a smooth curve in M. A vector field
X is said to be parallel along y iff V,.X = 0.1f y' itself is parallel
along y, we say that y is a geodesic (this notion is different from
the corresponding one in the calculus of variations), and in this case
[I¥’Il is constant. When ||y’|| = 1, y is said to be normalized. A
geodesic joining x to y in M is said to be minimal if its length equals
dx,y).

A Riemannian manifold is complete if for any x € M all
geodesics emanating from x are defined for all —oo < t < +00.By
the Hopf-Rinow Theorem, we know that if M is complete then any
pair of points in M can be joined by a minimal geodesic. Moreover,
(M, d) is a complete metric space and bounded closed subsets are
compact.

We use P, .. to denote the parallel transport on the tangent
bundle TM along y with respect to V, which is defined by

P, ). y@@) =V(y(b)) foranya,b e Randv € T,yM,

where V is the unique vector field satisfying V)V = 0 for all ¢
and V(y(a)) = v.Then, forany a, b € R, P, s,y (a is an isometry
from T, M to T, M. We will write P,  instead of P, , x in the
case where y is a minimal geodesic joining x to y; this will avoid
any confusion.

Assuming that M be complete, the exponential map exp,
T,M — M at x is defined by exp, v = y,(1, x) for each v € T,M,
where y(-) = y,(-, x) is the geodesic starting at x with velocity
v. Then exp, tv = y,(t, x) for each real number t. Note that the
mapping exp, is differentiable on T,M for any x € M.

A complete, simply connected Riemannian manifold of nonpos-
itive sectional curvature is called a Hadamard manifold. Through-
out the remainder of this paper, we will always assume that M is
an m-dimensional Hadamard manifold. The following result is well
known (see, for example, Theorem 4.1 of [24]).

Proposition 2.1. Let M be a Hadamard manifold and p € M. Then
exp, : T,M — M is a diffeomorphism, and for any two points p,
q € M, there exists a unique normalized geodesic joining p to q, which
is, in fact, a minimal geodesic.

This proposition shows that M is diffeomorphic to the Euclidean
space R™. Thus, we see that M has the same topology and
differential structure as R™. Moreover, Hadamard manifolds and
Euclidean spaces have some similar geometrical properties. One
of the most important properties is described in the following
proposition, which is taken from Proposition 4.5 of [24] and will
be useful in our study. Recall that a geodesic triangle A(p1p,p3) of
a Riemannian manifold is a set consisting of three points p;, p, and
D3, and three minimal geodesics joining these points.
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