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a b s t r a c t

In this paper, we study 0–1 linear programs with joint probabilistic constraints. The constraint matrix
vector rows are assumed to be independent, and the coefficients to be normally distributed. Our main
results show that this non-convex problem can be approximated by a convex completely positive
problem. Moreover, we show that the optimal values of the latter converge to the optimal values of the
original problem. Examples randomly generated highlight the efficiency of our approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the following 0–1 linear program with
joint probabilistic or chance constraints, called (LPJPC) hereafter:

max cT x
(LPJPC) s.t. Pr{Tx ≤ D} ≥ 1 − α (1)

wT
t x = dt , t = 1, . . . ,m (2)

w̄T
t̄ x ≤ d̄t̄ , t̄ = 1, . . . , m̄ (3)

x ∈ {0, 1}n (4)

where c ∈ Rn, wt ∈ Rn, w̄t̄ ∈ Rn, D = (D1, . . . ,DK ) ∈ RK , T =

[T1, . . . , TK ]
T is a K ×n randommatrix, where Tk, k = 1, . . . , K is a

random vector in Rn, and α is a prespecified confidence parameter.
One of the fundamental problems is to solve LPJPC in the case
where the number of the constraints under the probability is
greater than one, i.e., K > 1.

Probabilistic constraint problems have been extensively stud-
ied in the literature for the last decades either in the case of indi-
vidual probabilistic constraints; see for instance Charnes et al. [5],
Prekopa [18,19], Kosuch and Lisser [12,13] or in the case of joint
probabilistic constraints, cf. Miller and Wagner [15], Jagannathan
[11], Henrion and Strugarek [10], Van Ackooij et al. [1], Cheng and
Lisser [6], Luedtke et al. [14].
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In this paper, we approximate the non-convex LPJPC with nor-
mally distributed matrix coefficients and independent matrix row
vectors by a convex completely positive problem (CP for short).
This naturally leads to semidefinite programming relaxations
(called SDPhereafter) that are solvable in polynomial time andpro-
vide tight lower bounds. The cone approximation is performed by
using the formulations proposed in [6].

The rest of this paper is organized as follows. In Section 2,we in-
troduce the new CP formulation and its theoretical properties, and
in Section 3 we present our computational experiment results to
illustrate the strength of our CP formulation and the effectiveness
of its SDP relaxation. Conclusions are given in the last section.

2. CP formulation

A symmetric matrix S is copositive if yT Sy ≥ 0 for all y ≥ 0,
and the set of all copositive matrices, denoted by C , is a closed, and
convex cone (see for instance [3,8] for recent surveys).

The convex cone C of copositive matrices and its dual cone C∗

of completely positivematrices have received great interest during
the last two decades thanks to the diversity of CP formulations in
different optimization topics, namely continuous and discrete op-
timizations. Several interesting NP-hard problems can be modeled
as convex conic optimization problems over those cones (see for
instance [3] and the references within). Our CP formulation relies
on the approximations proposed in [6].

We assume that Tk, k = 1, . . . , K are independent multivariate
normally distributed vectors with known mean vector µk = (µk1,
. . . , µkn) and covariance matrix Σk.
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The normal-distribution assumption is motivated by its several
theoretical characteristics amongst them the central limit theo-
rem. From the practical point of view, several uncertainty sources
could be w.l.o.g considered as normally distributed. However, in-
dependence of the random variables is important in our approach
as our approximations are based on this assumption.

Ackooij et al. [1] derived an explicit way to calculate the gradi-
ent of the constraint functions for the LPJPCmodel with dependent
random variables assumption. However, computing the gradients
is highly demanding in terms of CPU time that it cannot be easily
used within a B&B framework.

According to our assumptions, we can derive a deterministic
reformulation of LPJPC as follows:

max cT x
s.t. µT

k x + F−1(pzk)∥Σ
1/2
k x∥ ≤ Dk, k = 1, . . . , K

(P0)
K

k=1

zk = 1, zk ≥ 0, k = 1, . . . , K

wT
t x = dt , t = 1, . . . ,m (5)

w̄T
t̄ x ≤ d̄t̄ , t̄ = 1, . . . , m̄

x ∈ {0, 1}n

where p = 1 − α and F−1(·) is the inverse of the standard normal
cumulative distribution function F .

The problem (5) is equivalent to

max cT x
s.t. (F−1(pzk))2xTΣkx ≤ (Dk − µT

k x)
2, k = 1, . . . , K

µT
k x ≤ Dk, k = 1, . . . , K

(P1)
K

k=1

zk = 1, zk ≥ 0, k = 1, . . . , K

wT
t x = dt , t = 1, . . . ,m

w̄T
t̄ x ≤ d̄t̄ , t̄ = 1, . . . , m̄

x ∈ {0, 1}n.

There are two steps to approximate the problem (5): first, we
approximate (F−1(pzk))2 with a piecewise tangent approximation
of zk [6] and the approximation of LPJPC is an SOCP problem apart
from the binary constraints. Second, we transform the SOCP con-
straints into linear constraints by using the linearization method.

Lemma 2.1. With the piecewise tangent approximation of (F−1

(pzk))2 and the linearization method, we have the approximation of
(P0) as follows:

OPTAP0 = max cT x

s.t. ⟨Σk, Zk
⟩ ≤ D2

k − 2Dkµ
T
k x + ⟨µkµ

T
k , X⟩, k = 1, . . . , K

µT
k x ≤ Dk,

K
k=1

zk = 1, zk ≥ 0, k = 1, . . . , K

Zk
i,j ≤ U+Xij, Zk

i,j ≤ F̂k, Zk
i,j ≥ 0

Zk
i,j ≥ F̂k − (1 − Xij)U+, i, j = 1, . . . , n, k = 1, . . . , K

F̂k ≥ al + blzk, l = 0, 1, . . . ,N,

(AP0) Xij ≤ xi, Xij ≤ xj, Xij ≥ 0
Xij ≥ xi + xj − 1, i, j = 1, . . . , n

Xii = xi, i = 1, . . . , n (6)
wT

t x = dt , t = 1, . . . ,m

w̄T
t̄ x ≤ d̄t̄ , t̄ = 1, . . . , m̄

x ∈ {0, 1}n

where a0 = 0, b0 = 0, U+ is an upper bound of F̂k and F̂k =

maxl=0,...,N{al + bl · zk} is a piecewise tangent approximation of
(F−1(pzk))2. Moreover, the optimal value of (AP0) is an upper bound
of (P0). Furthermore, limN→inf OPTAP0 = OPTP0 .

Proof. First, we prove that (F−1(pz))2 is convex on the interval
(0, 1]. The second derivative of F−1(pz) is given by

(F−1(pz))′′ =
(ln p)2pz[f (F−1(pz)) + F−1(pz)]

[f (F−1(pz))]2
.

As p ≥
1
2 , then F−1(pz) is nonnegative. Therefore, (F−1(pz))′′ is

nonnegative and F−1(pz) is convex. Moreover, as the square func-
tion is non-decreasing and convex on the interval [0, ∞), then
(F−1(pz))2 is convex. Second, by applying the standard lineariza-
tion technique introduced in [9] and the theory presented in [6],
we can show that the optimal value of (AP0) is an upper bound of
(P0). Finally, applying the results of the piecewise linear approxi-
mation presented in [21] concludes the proof. �

By adding the slack variables sk, ŝk, ŝkl, s̄t̄ , Zk′ , Zk′′ , Zk′′′ , X ′

ij, X
′′

ij ,

X ′′′

ij , we get the standard formulation [4]:

OPTAP1 = max cT x

s.t. ⟨Σk, Zk
⟩ + 2Dkµ

T
k x − ⟨µkµ

T
k , X⟩ + sk = D2

k, k = 1, . . . , K

µT
k x + ŝk = Dk,

K
k=1

zk = 1, k = 1, . . . , K

U+Xij − Zk
i,j − Zk′

i,j = 0, F̂k − Zk
i,j − Zk′′

i,j = 0,

i, j = 1, . . . , n, k = 1, . . . , K

Zk
i,j − F̂k − Xi,jU+

− Zk′′′
i,j = −U+,

i, j = 1, . . . , n, k = 1, . . . , K

F̂k − blzk − ŝkl = al, l = 1, . . . ,N, k = 1, . . . , K

(AP1) xi − Xij − X ′

ij = 0, xj − Xij − X ′′

ij = 0,

i, j = 1, . . . , n

xi + xj − 1 − Xij + X ′′′

ij = 0, i, j = 1, . . . , n

xi − Xii = 0, i = 1, . . . , n

wT
t x = dt , t = 1, . . . ,m

w̄T
t̄ x + s̄t̄ = d̄t̄ , t̄ = 1, . . . , m̄

zk, sk, ŝk, s̄t̄ ≥ 0, ŝkl ≥ 0, Zk
i,j, Z

k′
i,j, Z

k′′
i,j , Z

k′′′
i,j ≥ 0

Xij, X ′

ij, X
′′

ij , X
′′′

ij ≥ 0, i, j = 1, . . . , n

x ∈ {0, 1}n.

(7)

For the sake of simplicity, problem (7) can be rewritten as
follows:

max ĉTy

s.t. ŵty = d̂t ,

t = 1, . . . , K(3n2
+ N + 2) + 3n2

+ n + m + m̄ + 1
yi ∈ {0, 1}, i = 1, . . . , n

y ∈ R(4n2+N+3)K+4n2+n+m̄
+

(8)

where ĉ , ŵt and d̂t are defined accordingly.

Theorem 2.0.1. (AP1) is equivalent to the following completely pos-
itive problem:

OPTCP = max ĉTy

s.t. ŵty = d̂t ,
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