
Operations Research Letters 41 (2013) 607–610

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Envy-free two-playerm-cake and three-player two-cake divisions

Nicolas Lebert a, Frédéric Meunier b,∗, Quentin Carbonneaux c

a Ecole des Ponts ParisTech, 6-8 avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-Vallée cedex 2, France
b Université Paris Est, CERMICS, Ecole des Ponts ParisTech, 6-8 avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-Vallée cedex 2, France
c Department of Computer Science, Yale University, New Haven, CT 06520, United States

a r t i c l e i n f o

Article history:
Received 7 May 2013
Received in revised form
25 July 2013
Accepted 31 July 2013
Available online 9 August 2013

Keywords:
Fair division
Envy-free
Matching
m-partite hypergraph
Polytope
Sperner’s lemma

a b s t r a c t

Cloutier, Nyman, and Su (2005) initiated the study of envy-free cake-cutting problems involving several
cakes. They showed that when there are two players and two or three cakes it is possible to find envy-free
cake-divisions requiring few cuts, under natural assumptions.

We prove that such a result also exists when there are two players and any number of cakes andwhen
there are three players and two cakes. The proof relies on the fractional matching number in m-partite
hypergraphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Context

Cake-cutting problems ask whether it is possible to divide a
cake among players in such a way that each of them believes the
division is fair. These problems go back to Steinhaus [6] and have
received a lot of attention. Many variations are possible depend-
ing on whether the pieces may be disconnected or not and on how
‘‘fair’’ is understood. In this note, we consider a division to be fair if
all players consider their ownpieces to be at least as valuable as any
of the others. Dubins and Spanier [3] were able to prove that such
a division exists provided that each player’s preference is defined
by a nonatomic measure over the cake. Unfortunately, a piece of
cake in their result may be a collection of many (possibly infinite)
disjoint connected subsets. Stromquist [7] improved their result by
showing that such a division can be obtained by cutting the cake
by q− 1 planes, each parallel to a given plane, where q is the num-
ber of players. Moreover, he showed that such divisions exist for
a larger class of ‘‘preferences’’. Informally, given a partition of the
cake into pieces, we require simply that each player is able to say
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which pieces he prefers.We consider this kind of preferences in the
present note and they are formally defined hereafter. According to
Su [8], Forest Simmons found a constructive proof of Stromquist’s
theorem based on Sperner’s lemma [5], the combinatorial counter-
part of Brouwer’s fixed point theorem.

In 2010, Cloutier, Nyman, and Su [1] asked whether extensions
of this theorem are possible when there are more than one cake.
Given m cakes, is it possible to divide each cake into a given num-
ber of connectedpieces and assign onepiece fromeach cake to each
player in such a way that each player believes his assignment at
least as good as any other assignment?

1.2. Model

Each cake is identified with the interval [0, 1]. A division of the
cake i into ri pieces is an ri-tuple xi =


xi1, . . . , xiri


, with xij ≥ 0

for all j ∈ [ri] and
ri

j=1 xij = 1, where xij is the size of the jth piece
(ordered from left to right) of the cake i. Given a division x1, . . . , xm
of them cakes, a piece selection is the selection of one piece in each
cake, i.e. it is an m-tuple (j1, . . . , jm) ∈ [r1] × · · · × [rm]. A player
prefers a certain piece selection if that player does not think that
any other piece selection is strictly better. For some divisions a
player may be indifferent to two or more ‘‘preferred’’ piece selec-
tions.

We make the following assumptions on the preferences, which
are the ones considered by Stromquist in the one-cake case.
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1. Independence of preferences: The preferences of one player do
not depend of the choices made by the other players.

2. The players are hungry: A player will never choose an empty
piece.

3. Preference sets are closed: If one player prefer the same piece
selection for a convergent sequence of division, then that piece
selection will be preferred at the limit.

A division of m cakes between q players is envy-free if there
exist q disjoint piece selections and an assignment of the piece
selections to the players such that each player prefers the piece
selection he gets to any other piece selection among all possible
piece selections for this division. The question studied by Cloutier,
Nyman, and Su is whether there exists an integer r(q,m), inde-
pendent of the preferences, such that there exists an envy-free di-
vision of the m cakes with no more than r(q,m) pieces per cake.
Note that Stromquist’s theorem asserts the existence of r(q, 1) for
any q and that r(q, 1) = q. Using a polytopal version of Sperner’s
lemma [2], Cloutier, Nyman, and Su proved the existence of r(2, 2)
and r(2, 3) and that r(2, 2) = 3 and r(2, 3) ≤ 4. They askedmore-
over whether r(2,m) ≤ m + 1.

1.3. Main results

We contribute to the questions by proving the following
theorem.

Theorem 1. The integer r(2,m) exists for anym ≥ 2 and is such that
r(2,m) ≤ m(m − 1) + 1.

In addition to the polytopal version of Sperner’s lemma, the
proof uses an inequality (Gyárfás’s theorem) between the match-
ing number and the fractional matching number inm-graphs.

We are also able to prove a first result involving three players.

Theorem 2. The integer r(3, 2) exists and is such that r(3, 2) ≤ 5.

1.4. Plan

In Section 2, we give the main tools used in the proofs, such as
a polytopal version Sperner’s lemma and Gyárfás’s theorem. Sec-
tion 3 is devoted to the proof of Theorem 1 and Section 4 to the
proof of Theorem 2.

2. Tools

2.1. Sperner’s labeling

Given a triangulation T of a polytope P , a Sperner labeling is a
map λ : V (T) → V (P), where V (T) and V (P) are respectively the
vertex sets of T and P , such that λ(v) is a vertex of theminimal face
of P containing v. The following theorem is proved in [2]. Given a
simplex σ , we denote its vertex set V (σ ). The polytopal version of
Sperner’s lemma already mentioned is the following theorem.

Theorem 3. Let T be a triangulation of a polytope P. If λ is a Sperner
labeling of T, then


σ∈T conv (λ(V (σ ))) = P.

Note that this theorem implies that for any point x of P , there is a
σ ∈ Twith dim σ = dim P such that x ∈ conv (λ(V (σ ))) and such
that conv (λ(V (σ ))) is non-degenerate, i.e. of dimension dim P .

2.2. Divisions, polytopes, owner-labeling, and preference-labeling

The divisions of the m cakes with ri pieces in cake i are exactly
the points of the polytope P = △1 × · · · × △m, where △i is the

(ri−1)-simplex {(xi1, . . . , xiri) ∈ Rri
+ :

ri
j=1 xij = 1}. The polytope

P – called the polytope of divisions – has Πm
i=1ri vertices and is of

dimension
m

i=1 ri − m.
Following [1], we explain how to locate the envy-free divisions

on P . We assume that a triangulation T of P is given. We label
the vertices of T with an owner-labeling, which is a map o : V (T)
→ [q] assigning a player to each vertex of the triangulation. We
require moreover this owner-labeling to be uniform: on each sim-
plex, the number of times each player appears as a label differs by
at most one from any other player. In other words, given any sim-
plex σ ∈ T and its vertex set V (σ ), we have

|o−1(k) ∩ V (σ )| −

|o−1(k′) ∩ V (σ )|
 ≤ 1 for all k, k′

∈ [q].
The following proposition is proved in [1]. The mesh-size of a

triangulation is the maximum diameter of its simplices.

Proposition 1. There exists a triangulation T admitting a uniform
owner-labeling for any polytope, any number q of players, and of
arbitrarily small mesh-size.

Given a triangulation T of P with a uniform owner-labeling o,
we define a new labeling λ : V (T) → V (P) of the vertices of T
with the vertices of P: the preference-labeling. Each vertex v of T is
a point in P and as such corresponds to a division of the m cakes.
The player o(v) prefers some piece selection (j1, . . . , jm) for this
division (in case of a tie, make an arbitrary choice). We define then
λ(v) to be the vertex of P with coordinates (λij(v))with λij(v) = 0
except for the pairs (i, ji) for which λiji(v) = 1. Since ‘‘the players
are hungry’’, the map λ is a Sperner labeling.

2.3. m-graphs and matchings

A hypergraph is a pair H = (V , E) where V is a finite set and E
a family of subsets of V . The elements of V are called the vertices
and the elements of E are called the edges. We denote by δ(v) the
set of edges containing a vertex v. A matching is a collection of
pairwise disjoint edges. A fractional matching is a vector w ∈ RE

+

such that


e∈δ(v) we ≤ 1 for all v ∈ V . Note that a matching is
a fractional matching with we ∈ {0, 1} for all edges e ∈ E. The
maximum cardinality of a matching, called the matching number,
is denoted ν(H) and the maximum possible value of


e∈E we for

a fractional matching w, called the fractional matching number, is
denoted ν∗(H). Since a matching is a fractional matching, we have
ν∗(H) ≥ ν(H).

An m-partite hypergraph, or m-graph, is a hypergraph H =

(V , E) whose vertex set is the disjoint union of m sets V1, . . . , Vm
and such that each edge intersects each Vi in exactly one vertex.
The following theorem, proved byGyárfás (according to Füredi [4]),
shows that the gap between the fractional matching number and
the matching number is not too large form-graphs.

Theorem 4 (Gyárfás’s Theorem). If H is an m-graph, then ν∗(H) ≤

(m − 1)ν(H).

2.4. A hypergraphic condition of existence of disjoint envy-free piece
selections

We consider a triangulation T of the polytope of division P and
assume that we have for T an owner-labeling o and a preference-
labeling λ. As in [1], we will use Theorem 3 to get the existence of
a simplex σ ∈ T with special features to obtain eventually the ex-
istence of an envy-free division of the cakes with no more than ri
pieces per cake i. However, we introduce an additional combinato-
rial criterion based on some hypergraph properties in an attempt
to systematize the reasoning.

Given a simplex σ ∈ T, we define H(σ ) to be them-graph with
Vi = {(i, j) : j ∈ [ri]} for i = 1, . . . ,m. The edges of H(σ ) are
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