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a b s t r a c t

In this paper, we consider mixed integer linear programming (MIP) formulations for piecewise linear
functions (PLFs) that are evaluated when an indicator variable is turned on. We describe modifications
to standard MIP formulations for PLFs with desirable theoretical properties and superior computational
performance in this context.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Optimization problems involving piecewise linear functions
(PLFs) appear in a wide range of applications. PLFs are frequently
used to approximate nonlinear functions and to model cost
functions involving economies of scale and fixed charges. Problems
involving non-convex PLFs are commonly formulated as mixed
integer programming (MIP) problems [4,17,8,2,23].

Consider a univariate PLF f : [B0, Bn] → R with its
domain [B0, Bn] divided into an increasing sequence of breakpoints
{B0, B1, . . . , Bn}. For simplicity, we assume that f (·) is continuous,
B0 = 0 and f (0) = 0. Our results can be extended to the case when
f (·) is lower semi-continuous, B0 ≠ 0, and f (B0) ≠ 0. The function
f (·) can be written as

f (x) := mix + ci, x ∈ [Bi−1, Bi] ∀i ∈ {1, . . . , n} (1)

wheremi ∈ R, ci ∈ R and B0 < B1 < · · · < Bn.
In this paper, we present MIP formulations for PLFs where

setting a binary indicator variable to zero forces the argument of
the function of f (·) to zerowhich in turn forces the function to take
a zero value. In other words,

z = 0 ⇒ x = 0, f (x) = 0. (2)

The goal of this work is to present a theoretical and
computational comparison of MIP formulations that enforce the
logical conditions in (2). Specifically, we examine properties of

∗ Corresponding author.
E-mail addresses: srikris@cs.wisc.edu (S. Sridhar), linderot@cae.wisc.edu

(J. Linderoth), jrluedt1@wisc.edu (J. Luedtke).

different formulations of the three variable set

X :=

n
i=1


(x, y, z) : x ∈ [Bi−1, Bi], y = mix + ci, z = 1




(0, 0, 0)

. (3)

In some applications, notably those where the PLF appears in a
minimization objective, the relevant set to study has the variable
y constrained to lie in the epigraph of a function. We denote X≥

as the set where the equality relationship y = mix + ci in (3) is
replaced with y ≥ mix + ci.

Methods for modeling PLFs include specially ordered sets
of type II (SOS2) [4], the incremental model, or delta method
(Delta) [17], the multiple choice model (MCM) [13], the con-
vex combination (CC) model [8], the disaggregated convex com-
bination model (DCC) [19], and approaches that require only
logarithmically many binary variables [24]. Table 1 lists several
applications in the literature that have modeled PLFs using these
well-known methods in conjunction with variable upper bound
constraints of the form
x ≤ Bnz (4)
to enforce the logical on–off condition (2).

In this work, we propose a simple modeling artifice for PLFs
that also enforces the logical condition (2), and we demonstrate
its desirable theoretical and computational properties. We start by
describing the idea using SOS2 to model a PLF as

x =

n
i=0

λi Bi, y =

n
i=0

λiFi 1 =

n
i=0

λi (5)

λ :=


λi ∈ R+ : ∀i ∈ {0, . . . , n}


is SOS2.
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Table 1
Applications using PLFs with indicator variables.

Ref. Application Model

[18] Gas network optimization SOS2
[1] Transmissions expansion planning Delta
[12] Oil field development CC
[6] Thermal unit commitment Delta
[16] Sales resource allocation MCM

In this formulation, the function f (·) and its argument x are ex-
pressed as convex combinations of breakpoints B := {B0, . . . , Bn}

and their corresponding function evaluations {F0, . . . , Fn} where
Fi := f (Bi) = miBi + ci. The formulation introduces a non-negative
set of variables λ ∈ Rn+1 that satisfy the SOS2 property—at most
two of the variables can be positive, and if two variables are posi-
tive then theymust be consecutive in the ordered set.Mostmodern
general purpose MIP solvers enforce the SOS2 condition algorith-
mically by branching [4].

Using variable upper bound constraints (4) to enforce the logical
condition (2) has two problems. First, the use of ‘‘bigM’’ constraints
may considerablyweaken the LP relaxation of theMIP formulation.
Second, the model introduces an additional constraint x ≤ Bnz.

We propose the following simple strengthening that replaces
x ≤ Bnz and

n
i=0 λi = 1 with

n
i=0

λi = z. (6)

Setting the binary variable z = 0 in (6) forces λi = 0 ∀i ∈

{0, . . . , n}, which in turn forces the function to take a zero value.
If the binary variable z = 1, then

n
i=0 λi = 1, which reduces

to (5). We show in Section 2.1 that a formulation using (6) has
the desirable property of being locally ideal, while one that uses
x ≤ Bnz does not.

In Section 2, we also show how to strengthen MIP formulations
of X that use the incremental model, the multiple choice model,
the convex combination model, the disaggregated convex combi-
nationmodel, and logarithmicmodels tomodel the PLF. Therefore,
this formulation strengthening technique could be directly applied
to all of the applications listed in Table 1. In all cases, we show that
our model retains the desirable theoretical property of the under-
lying PLF modeling method, either idealness or sharpness, but us-
ing a variable upper bound constraint x ≤ Bnz destroys the prop-
erty. Borghetti et al. [5] created a formulation of X that employed
the strengthening techniques we describe. They used the convex
combination method to model the PLFs which does not have the
locally ideal property [23]. In the case that the PLFs are convex,
we describe a connection between the formulation strengthening
techniques we describe and the perspective reformulation [11]. The
Delta, MCM, CC, and DCC MIP formulations can all be extended to
modelmultivariate piecewise linear functions [23].When themul-
tivariate piecewise linear functions are combined with the struc-
ture (2), our strengthened formulation can be similarly applied.We
omit the details to simplify exposition. We conclude with a com-
putational study on a practical application to illustrate the bene-
fits of the new formulations. In our experiments, we observed that
our formulation computes optimal solutions on average 40 times
faster.

2. Properties of MIP formulations

Padberg and Rijal [21] define a locally ideal MIP formulation as
onewhere the vertices of its corresponding LP relaxation satisfy all
required integrality conditions. Extending this definition, Croxton
et al. [7] and Keha et al. [14] define a locally ideal SOS2 formulation
as one whose LP relaxation has extreme points that all satisfy

the SOS2 property. As shown by Vielma et al. [23], all commonly
used MIP formulations of PLFs, except for the original convex
combination (CC) model, are known to be locally ideal. In this
section, we demonstrate the theoretical strength of the proposed
formulations for X that include the logical condition (2).

2.1. SOS2 model

We consider the following two SOS2-based formulations for X:

S1 :=


(x, y, λ, z) ∈ R × R × Rn+1

+
× {0, 1} :

x =

n
i=0

Biλi, y =

n
i=0

Fiλi, 1 =

n
i=0

λi,

x ≤ Bnz, λ is SOS2



S2 :=


(x, y, λ, z) ∈ R × R × Rn+1

+
× {0, 1} :

x =

n
i=0

Biλi, y =

n
i=0

Fiλi, z =

n
i=0

λi, λ is SOS2


where S1 is a standard SOS2model for PLFs that uses the constraint
(4), while formulation S2 uses the constraint (6) to model the
logical condition (2). One can easily show that both S1 and S2 are
valid formulations of X . In otherwords, for either T = S1 or T = S2,

X =


(x, y, z) : ∃λ ∈ Rn+1 s.t (x, y, z, λ) ∈ T


.

We use the standard definition of the linear programming (LP)
relaxation of a model as the relaxation obtained by replacing
integrality restrictions on variables with simple bound restrictions
and by removing adjacency requirements for SOS2 variables. We
now prove that the formulation S2 is locally ideal while S1 is not.

Theorem 1. Formulation S2 is locally ideal.

Proof. The LP relaxation of S2 has n + 4 variables, three equality
constraints

x =

n
i=0

Biλi, y =

n
i=0

Fiλi, z =

n
i=0

λi,

and n+2 inequality constraints, z ≤ 1 and λi ≥ 0∀i = 0, 1, . . . , n.
Extreme points of the LP relaxation of S2 have n + 4 binding
constraints, which forces at least n variables from λ ∈ Rn+1

+ to be
exactly equal to zero. Thus, the extreme points of the LP relaxation
of S2 are

{(x = Bi, y = Fi, λ = Bie⃗i, z = 1) ∀i ∈ {1, . . . , n}}
(x = 0, y = 0, λ = 0⃗, z = 0) (7)

where e⃗i are the n dimensional unit vectors. All points in (7) have
z ∈ {0, 1} and satisfy the SOS2 properties for the λ variables.
Hence, S2 is locally ideal. �

A point (x, y, λ, z) can be an extreme point of the set

P≥

2 :=


(x, y, λ, z) ∈ R × R × Rn+1

+
× [0, 1] :

x =

n
i=0

Biλi, y ≥

n
i=0

Fiλi, z =

n
i=0

λi


only if y =

n
i=0 Fiλi. Therefore, the proof of Theorem 1 also

establishes that expressing the logical condition (2) using (6) also
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