
Operations Research Letters 41 (2013) 644–649

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

A hybrid genetic algorithm for the repetition free longest common
subsequence problem
Mauro Castelli a,∗, Stefano Beretta b,c, Leonardo Vanneschi a,b
a ISEGI, Universidade Nova de Lisboa, 1070-312, Lisboa, Portugal
b DISCo, University of Milano Bicocca, 20126 Milano, Italy
c Inst. for Biomedical Technologies, National Research Council, 20090 Segrate, Italy

a r t i c l e i n f o

Article history:
Received 11 June 2013
Received in revised form
5 September 2013
Accepted 5 September 2013
Available online 12 September 2013

Keywords:
Repetition free longest common
subsequence

Heuristics
Genetic algorithms
Estimation of distribution algorithms

a b s t r a c t

Computing the longest common subsequence of two sequences is one of the most studied algorithmic
problems. In this work we focus on a particular variant of the problem, called repetition free longest
common subsequence (RF-LCS), which has been proved to be NP-hard. We propose a hybrid genetic
algorithm, which combines standard genetic algorithms and estimation of distribution algorithms, to
solve this problem.An experimental comparisonwith somewell-knownapproximation algorithms shows
the suitability of the proposed technique.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important problem in the field of algorithms
on strings is the computation of the longest common subsequence
(LCS) of two sequences, over a given alphabet. Its importance is
mostly due to its wide range of applications, covering many re-
search fields. For example, several applications of different variants
of the LCS problem can be found in bioinformatics, which are used
to perform analysis on sequences of DNA or RNA. Other interest-
ing applications of variants of the LCS problem can be found in [2].
More specifically, the LCS problem between two given strings S1
and S2 asks for finding a longest sequence S which is subsequence
of both the input strings S1 and S2 (see Section 2 for a formal defi-
nition of the problem). Although the LCS problem can be solved in
polynomial time (see [14]) using for example a dynamic program-
ming approach (see [7]), its generalization to a set of sequences,
which ask for finding the longest sequence that is subsequence of
all the input sequences, is NP-hard (see [12]).

Different variants of the longest common subsequence prob-
lem have been proposed [4–6,17] to compare biological sequences,
where, given two strings S1 and S2, the computed longest common

∗ Corresponding author. Tel.: +351 213828628; fax: +351 213872140.
E-mail addresses: castelli.mauro@gmail.com, mcastelli@isegi.unl.pt

(M. Castelli), beretta@disco.unimib.it (S. Beretta), lvanneschi@isegi.unl.pt
(L. Vanneschi).

subsequence is required to satisfy some constrains. An interesting
variant of the LCS problem is the so- called repetition-free longest
common subsequence (RF-LCS) which, given two sequences S1 and
S2, asks for finding the longest sequence S that is subsequence of
both S1 and S2 and such that it contains at most one occurrence
of each symbol [1]. This variant is used to model the genome re-
arrangement with respect to the duplications of some genes. The
goal of this study is to infer the (supposed) original sequence of
genes, inwhich every gene has only one occurrence, starting froma
set of sequences, each one (possibly) containing multiple copies of
some genes [16]. This particular problemhas been strongly investi-
gated and the complexity results can be found in [8]. Finally, other
recent studies focused on the so-called doubly-constrained longest
common subsequence (DC-LCS), which generalizes the mathemati-
cal formulation of theRF-LCS (andother constrained variants of LCS
problems). In particular, some complexity results on this problem
can be found in [5], while the work proposed in [3] discusses the
parameterized complexity of the RF-LCS problem.

In this paper we define a hybrid genetic algorithm (GA) to ad-
dress the RF-LCS problem. The idea of the proposed technique is
to use standard genetic algorithms and estimation of distribution
algorithms. In particular a genetic algorithm is used to explore the
search space, while an estimation of distribution algorithm pro-
vides a simple, efficient and theoretically sound method to guar-
antee that the constrains of the RF-LCS problem are satisfied.

The paper is organized as follows: Section 2 introduces the
basic definitions that will be used in the rest of the paper; Sec-
tion 3 introduces the genetic algorithms (GAs) describing their

0167-6377/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.orl.2013.09.002

http://dx.doi.org/10.1016/j.orl.2013.09.002
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2013.09.002&domain=pdf
mailto:castelli.mauro@gmail.com
mailto:mcastelli@isegi.unl.pt
mailto:beretta@disco.unimib.it
mailto:lvanneschi@isegi.unl.pt
http://dx.doi.org/10.1016/j.orl.2013.09.002

M. Castelli et al. / Operations Research Letters 41 (2013) 644–649 645

computational model, while Section 4 focuses on the estimation of
distribution algorithms (EDAs), presenting their properties and the
main differenceswith GAs. Section 5 presents the hybrid algorithm
developed to solve the RF-LCS problem, while Section 6 describes
the experimental settings, and discusses the obtained results com-
paring them with the ones obtained with other approximation al-
gorithms.

2. Basic definitions

In this section we give some basic concepts and notations that
will be used in the rest of the paper. Let S be a string over an alpha-
bet Σ of size |Σ |. Given a string S, we denote by S[i] the symbol
occurring at position i in string S. Let also S[i . . . j] be the substring
of S starting at position i and ending at position j. Given two se-
quences S and S ′ over a finite alphabet Σ , S ′ is a subsequence of S if
S ′ can be obtained from S by removing some (possibly zero) char-
acters.When S ′ is a subsequence of S, then S is a supersequence of S ′.
Given two sequences S1 and S2, the LCS problem asks for a longest
possible sequence S that is a subsequence of both S1 and S2. In the
rest of the paper we will focus on the following variant of the LCS
problem.

Problem 1 (Repetition-free Longest Common Subsequence
(RF-LCS)). Input: two strings S1 and S2 over an alphabetΣ .Output:
a longest common subsequence S of S1 and S2 so that S contains at
most one occurrence of each symbol σ ∈ Σ .

It has been proved in [1] that Problem 1 is APX-hard even when
each symbol occurs at most twice in each of the input strings S1
and S2.

3. Genetic algorithm

Genetic Algorithms (GAs) [9,10] are a class of computational
models that mimic the process of natural evolution. GAs are of-
ten viewed as function optimizers although the range of problems
to which they have been applied is quite broad. Although differ-
ent variants of GAs exist, most of the methods called ‘‘GAs’’ have at
least the following elements in common: populations of chromo-
somes, selection according to fitness, crossover to produce newoff-
spring, and random mutation of new offspring. The chromosomes
in a GA population typically take the form of bit strings. Each locus
in the chromosome has two possible alleles: 0 and 1. Each chromo-
some (or individual) can be thought of as a point in the search space
of candidate solutions. The GA processes populations of chromo-
somes, successively replacing one such population with another.
GAs most often require a fitness function that assigns a score (fit-
ness) to each chromosome in the current population. The fitness of
a chromosome depends on how well that chromosome solves the
problem at hand.

Genetic operators are used to create a new population of chro-
mosomes starting from the existing one (population of parents),
and the simplest form of the genetic algorithm involves three
types of operators: selection, crossover (single point), and muta-
tion. The selection operator selects chromosomes in the population
for reproduction. The fitter the chromosome, the more times it is
likely to be selected to reproduce. The crossover operator randomly
chooses a locus and exchanges the subsequences before and after
that locus between two chromosomes to create two offspring. The
crossover operator roughly mimics biological recombination be-
tween two single-chromosome (haploid) organisms. Themutation
operator randomly flips some of the bits in a chromosome. Muta-
tion can occur at each bit position in a stringwith some probability,
usually very small (e.g., 0.001).

Given a problem to be solved and a bit string representation for
candidate solutions, a simple GA works as follows: (1) start with

a randomly generated population of nl-bit chromosomes (candi-
date solutions to the problem). (2) Calculate the fitness f (x) of each
chromosome x in the population. (3) Repeat the following steps un-
til n offspring has been created: (3.1) select a pair of parent chro-
mosomes from the current population, the probability of selection
being an increasing function of fitness. Selection is done ‘‘with re-
placement’’, meaning that the same chromosome can be selected
more than once to become a parent. (3.2) With probability pc (the
‘‘crossover probability’’), cross over the pair at a randomly chosen
point (chosen with uniform probability) to form two offspring. If
no crossover takes place, form two offspring that are exact copies
of their respective parents. (3.3) Mutate the two offspring at each
locus with probability pm (the ‘‘mutation probability’’), and place
the resulting chromosomes in the new population. (4) Replace the
current population with the new population, and repeat from Step
2 until a certain number of generations have been performed (or
other termination criteria are met). Each iteration of this process is
called a generation.

This introduction to the basic GA algorithm is taken from [13]
and the reader is referred to [13,9] for a complete introduction to
GAs.

4. Estimation of distribution algorithm

As observed in [15], from an abstract point of view, the selected
set of promising solutions can be viewed as a sample drawn from
a probability distribution. Although the true probability distribu-
tion is unknown, there are algorithms that are able to estimate that
probability distribution by using the selected set of solutions itself
and use this estimate to generate new solutions. These algorithms
are called estimation of distribution algorithms (EDAs) [11]. In EDAs
better solutions are selected from an initially randomly generated
population of solutions like in the simple GAs. Then, the true prob-
ability distribution of the selected set of solutions is estimated and
new solutions are generated according to this estimate. The new
solutions are then added into the original population, replacing
some of the old ones. The process is repeated until the termination
criteria are met.

EDAs therefore do the same as GAs except for that they replace
genetic crossover and mutation operators by the following two
steps: (1) a model (an estimate of the true distribution) of selected
promising solutions is constructed and (2) new solutions are gen-
erated according to the constructed model. Hence, while in GAs
(and other heuristics from evolutionary computation) the interre-
lations between the different variables representing the individu-
als are kept in mind implicitly (e.g. building block hypothesis [9]),
in EDAs the interrelations are expressed explicitly through the
probability distribution associated with the individuals selected at
each iteration.

5. Method

In this section, the proposed algorithm used to address the
RF-LCS problem is presented. Let S1 and S2 be the two sequences
over an alphabetΣ that represent the input of the problem.We as-
sume, without the loss of generality, that the two sequences have
the same length l. A possible solution for the RF-LCS problem is
codified by means of a binary string K that has the same length of
the two sequences S1 and S2. More in detail, ‘1’ in a particular posi-
tion i (with i ≤ l) indicates that the longest common subsequence
(without repetition of characters) between S1 and S2 includes the
ith character of S1. On the other hand, ‘0’ indicates that the common
subsequence should not consider the ith character of S1. Hence, an
individual of the GA population is a string where each bit in posi-
tion i, with 1 ≤ i ≤ l, indicates whether or not the ith character

Download English Version:

https://daneshyari.com/en/article/10523967

Download Persian Version:

https://daneshyari.com/article/10523967

Daneshyari.com

https://daneshyari.com/en/article/10523967
https://daneshyari.com/article/10523967
https://daneshyari.com

