Disjoint cycles with different length in 4-arc-dominated digraphs

Yunshu Gao*, Ding Ma
School of Mathematics and Computer Science, Ningxia University, Yinchuan, 750021, PR China

ARTICLE INFO

Article history:

Received 31 January 2013
Received in revised form
7 September 2013
Accepted 8 September 2013
Available online 14 September 2013

Keywords:

Digraphs
Vertex-disjoint cycles
Minimum out-degree

Abstract

Ad-arc-dominated digraph is a digraph D of minimum out-degree d such that for every $\operatorname{arc}(x, y)$ of D, there exists a vertex u of D of out-degree d such that (u, x) and (u, y) are arcs of D. Henning and Yeo [Vertex disjoint cycles of different length in digraphs, SIAM J. Discrete Math. 26 (2012) 687-694] conjectured that a digraph with minimum out-degree at least four contains two vertex-disjoint cycles of different length. In this paper, we verify this conjecture for 4 -arc-dominated digraphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Our notations mainly follow that of Bang-Jensen and Gutin [3]. In a digraph, a cycle of length one is a loop and a cycle of length three is called a triangle. All digraphs contained in this paper can have loops and cycles of length two but no parallel arcs. A digraph without cycles of length at most two is called an oriented digraph, and a digraph without loops and parallel arcs is called a strict digraph.

Let $D=(V(D), A(D))$ denote a digraph, its order is $|V(D)|$. Let $x, y \in V(D)$, if there is an arc from x to y, then we write $x \rightarrow y$ and say x dominates y. Given a subset X of $V(D)$, the sub-digraph of D induced by X is the digraph $D[X]:=\left(X, A^{\prime}\right)$, where A^{\prime} is the set of all arcs in $A(D)$ that start and end in X. Two sub-digraphs D_{1} and D_{2} of D are disjoint if their vertex sets are. If X and Y are two disjoint subsets of $V(D)$ or sub-digraphs of D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted by $X \rightarrow Y$. Furthermore, $X \rightsquigarrow Y$ denotes the property that there is no arc from Y to X. If the set X is composed of only one vertex v we simply say that v dominates Y. The set Y is dominated if there exists a vertex dominating it. The set X dominates a subdigraph D^{\prime} of D if it dominates its vertex set $V\left(D^{\prime}\right)$. We use $a^{+}(X, Y)$ to denote the number of arcs from X to Y, and $a^{-}(X, Y)$ denote the number of arcs from Y to X.

For every vertex $v \in V(D)$, let $N_{D}^{+}(v):=\{u \in V(D) \mid v \rightarrow u\}$ be the out-neighborhood of v in D, namely, the set of vertices dominated by x in D, and let $d_{D}^{+}(v)=\left|N_{D}^{+}(v)\right|$ be the out-degree of v in D. Similarly, the in-neighborhood of x in D is denoted by $N_{D}^{-}(v)$, which

[^0]is the set of vertices dominating v in D, and let $d_{D}^{-}(v)=\left|N_{D}^{-}(v)\right|$ be the in-degree of v in D. The minimum out-degree and the minimum in-degree of D are defined by $\delta^{+}(D)=\min \left\{d_{D}^{+}(v): v \in\right.$ $V(D)\}$ and $\delta^{-}(D)=\min \left\{d_{D}^{-}(v): v \in V(D)\right\}$, respectively. A digraph D is k-regular if, for any $x \in V(D), d_{D}^{+}(x)=d_{D}^{-}(x)=k$. A path or a cycle of D always means a directed path or a directed cycle of D. If $C=x_{1} x_{2} x_{3} \ldots x_{r} x_{1}$ is a cycle in D, then $C\left[x_{i}, x_{j}\right]$ denotes the path $x_{i} x_{i+1} \ldots x_{j}$ along the direction of C, where all indices are taken modulo r. In particular, if $i=j$, then $C\left[x_{i}, x_{j}\right]$ denotes the empty path with vertex x_{i}. A d-arc-dominated digraph is a digraph D of minimum out-degree d such that for every arc (x, y) of D, there exists a vertex u of D of out-degree exactly d such that (u, x) and (u, y) are arcs of D.

A tournament T is a digraph T such that for any two distinct vertices x and y, exactly one of the couples $x \rightarrow y$ and $y \rightarrow x$ is an arc of T. The following conjecture, due to Bermond and Thomassen [4], gives a relation between the minimum out-degree and the maximum number of disjoint cycles in a digraph.

Conjecture 1.1 ([4]). Let $k \geq 1$ be an integer, any digraph D with $\delta^{+}(D) \geq 2 k-1$ contains k disjoint cycles.

Conjecture 1.1 is trivial for $k=1$. Thomassen [11] verified the case when $k=2$ by a nice induction technique. Lichiardopol et al. [9] proved the case when $k=3$. Note that Alon [1] proved that a lower bound of $64 k$ on the minimum out-degree gives k disjoint cycles. Along a different line, it was shown in [5] that every tournament with both minimum out-degree and minimum in-degree at least $2 k-1$ contains k disjoint triangles. Recently, Bang-Jensen et al. [2] verified Conjecture 1.1 for tournament. In the proofs of Thomassen [11] and Lichiardopol et al. [9], a crucial role is played by an oriented 2 -arc-dominated digraph and an oriented 3-arcdominated digraph, respectively. In general, Lichiardopol posed
the problem (see Problem 912 (BB20.4) in [6]): characterize d-arcdominated digraphs for any positive integer d.

Lichiardopol [6] also posed the following conjecture there, which could be viewed as an important step to attack Conjecture 1.1.
Conjecture 1.2. A d-arc-dominated digraph with $d \geq 2 k-1$ contains k disjoint cycles.
N. D. Tan [10] answered Lichiardopol's problem [6] for the case $d=3$, and he showed that an oriented digraph is 3-arc-dominated if each of its connected components is isomorphic to two known exceptional graphs. These two exceptional graphs (see [10]) always have two disjoint cycles with the same length. As noted in [8], there are examples of 3-regular digraphs where all pairs of vertex disjoint cycles have the same length. Henning and Yeo [8] proved that all 4-regular digraphs have two disjoint cycles of different length, and also proposed the following conjecture.
Conjecture 1.3 ([8]). Let D be a digraph. If $\delta^{+}(D) \geq 4$, then D contains two disjoint cycles of different length.

Motivated by this conjecture and the main result of Bang-Jensen et al. [2], we [7] show that Conjecture 1.3 is true for tournament.
Theorem 1.4 ([7]). Let T be tournament with $\delta^{+}(T) \geq 3$, then T contains a cycle of length three and a cycle of length four, such that these two cycles are disjoint, unless T is isomorphic to some known graphs.

In this paper, we prove Conjecture 1.3 is true for any 4 -arcdominated digraph.

Theorem 1.5. Let D be a 4-arc-dominated digraph, then D contains two disjoint cycles with different length.

2. Proof of Theorem 1.5

We proceed by contradiction. Suppose that the statement of Theorem 1.5 is false and consider a counter-example with the minimum number of vertices. Let D be a counter-example to the statement of Theorem 1.5 with the smallest of number of vertices, and subject to this with the smallest number of arcs. Then every vertex in $V(D)$ has out-degree exactly four. Suppose that there exists a vertex u of D with out-degree at least 5 . Let $u \rightarrow v \in A(D)$. Then $D-(u, v)$ is a digraph of minimum out-degree 4. For arbitrary arc (x, y) of $D-(u, v)$, there exists a vertex w of minimum out-degree 4 in D, such that (w, x) and (w, y) are arcs of D. But then (w, x) and (w, y) are arcs of $D-(u, v)$, because of $w \neq u$. So, (x, y) is 4 -arc-dominated in $D-(u, v)$, which implies that $D-(u, v)$ is a 4 -arc-dominated digraph. Clearly $D-(u, v)$ is a counter-example for Theorem 1.5 , which by minimality of the size of a counterexample, is not possible. So, every vertex of D has out-degree 4. We begin with an easy observation and then establish some fundamental properties of D.
Lemma 2.1. If D is a strict digraph and max $\left\{\delta^{+}(D), \delta^{-}(D)\right\}=k>$ 0 , then D contains a directed cycle of length at least $k+1$.

Lemma 2.2. The following hold.
(i) The digraph D is an oriented digraph.
(ii) The in-neighborhood of every vertex in D contains a cycle of length at least three.
(iii) The digraph D contains a triangle.

Proof. (i) Suppose that C is a cycle of D with length at most two. If C is a loop, the digraph obtained from D by removing the vertex of C has minimum out-degree at least three, thus contains a cycle C^{\prime} with length at least two, a contradiction. Hence, we may assume that D is strict and C is a cycle of length two, note that the induced sub-digraph D^{\prime} of D obtained by removing the vertices of C has minimum out-degree at least two, so D^{\prime} contains a cycle of length at least three by Lemma 2.1, which disjoints with C, a contradiction.
(ii) By the minimality of D, each vertex $x \in V(D)$ satisfies $d_{D}^{-}(x) \geq$ 1. Choose any one in-neighbor of x, say v. Note that $v \rightarrow x$ is dominated, that is, there exists $y \in V(D)$ with $y \rightarrow x$ and $y \rightarrow v$. Therefore, the digraph $D\left[N_{D}^{-}(x)\right]$ has in-degree at least one and thus contains a cycle. Combining with (i), we complete the proof of (ii).
(iii) Suppose that D contains no triangle. This implies that for each $v \in V(D), d_{D}^{-}(v) \geq 4$ by (i) and (ii). We claim that D is 4-regular; otherwise,

$$
\begin{equation*}
4|V(D)|<\sum_{x \in V(D)} d_{D}^{-}(x)=\sum_{x \in V(D)} d_{D}^{+}(x)=4|V(D)| \tag{1}
\end{equation*}
$$

a contradiction. Then, by the theorem of Henning and Yeo [8], D contains two disjoint cycles of different length, which contradicts the fact that D is a counter-example.
We need the following lemma which was discovered by Lichiardopol et al. [9]. This lemma plays a very important role in our proof.

Lemma 2.3 ([9]). Let D be an arc-dominated oriented digraph, and let $X \subset V(D)$ such that $D[X]$ is either acyclic or an induced cycle of D. Then there exists a cycle C disjoint from $D[X]$ such that every vertex of C has at least one out-neighbor in X.

Definition 2.4. Let T_{1} and T_{2} denote two disjoint triangles in D, such that each vertex of $V\left(T_{2}\right)$ has at least one out-neighbor in $V\left(T_{1}\right)$ and $a^{+}\left(V\left(T_{1}\right), V\left(T_{2}\right)\right)>0$, then we say that T_{1} and T_{2} are two good triangles, and denoted by $\overrightarrow{T_{1} \Leftarrow T_{2}}$.

Lemma 2.5. Let $\overrightarrow{T_{1} \Leftarrow T_{2}}$. Then $D\left[V\left(T_{1} \cup T_{2}\right)\right]$ contains two cycles of different length (not necessarily disjoint).
Proof. Let $T_{1}=x_{1} y_{1} z_{1} x_{1}$ and $T_{2}=x_{2} y_{2} z_{2} x_{2}$. Since $a^{+}\left(V\left(T_{1}\right)\right.$, $\left.V\left(T_{2}\right)\right)>0$, without loss of generality, we may suppose that $x_{1} \rightarrow$ x_{2}. Then $y_{1} z_{1} x_{1} x_{2} y_{2} z_{2}$ is a Hamiltonian path P of $D\left[V\left(T_{1} \cup T_{2}\right)\right]$. Since each vertex of T_{2} has at least 2 out-neighbors in $V\left(T_{1} \cup T_{2}\right), z_{2}$ has at least two out-neighbors in P, which yields two cycles of different length. This proves Lemma 2.5.

We continue the proof. By Lemma 2.1, D is arc-dominated oriented graph and contains a triangle, denoted by C_{1}. Furthermore, note that $|V(D)| \geq 9$.

Claim 2.1. D does not contain two good triangles.
Proof. Suppose not. D contains two good triangles, say $T_{1}=$ $x_{1} y_{1} z_{1} x_{1}$ and $T_{2}=x_{2} y_{2} z_{2} x_{2}$ and $\vec{T}_{1} \Leftarrow T_{2}$. By Lemma 2.5 and the fact that D is a counter-example, the digraph D^{\prime} obtained by removing $V\left(T_{1} \cup T_{2}\right)$ from D is acyclic. This implies that there exists a vertex $u \in V\left(D^{\prime}\right)$ having no out-neighbor in $V\left(D^{\prime}\right)$, so u has exactly four out-neighbor in $V\left(T_{1} \cup T_{2}\right)$. Furthermore, by Lemma 2.2, $D\left[N_{D}^{-}(u)\right]$ contains a cycle with length at least three, say C^{\prime}. Clearly, $V\left(C^{\prime}\right) \cap$ $V\left(T_{1} \cup T_{2}\right) \neq \emptyset$, as otherwise, by Lemma $2.5, D$ contains two disjoint cycles of different length, a contradiction. We consider two cases.

Case 1. One of $V\left(T_{1}\right)$ and $V\left(T_{2}\right)$ belongs to $N_{D}^{+}(u)$.
Without loss of generality, say $V\left(T_{1}\right) \cup\left\{y_{2}\right\} \subseteq N_{D}^{+}(u)$. Then $u \rightsquigarrow x_{2}$, as otherwise, $u y_{2} z_{2} x_{2} u$ is a cycle of length four, which disjoints from T_{1}, a contradiction. By Lemma 2.2(ii), $z_{2} \in V\left(C^{\prime}\right)$ and so $z_{2} \rightarrow u$. Let $a \in V\left(D^{\prime} \cap C^{\prime}\right)$ such that $z_{2} \rightarrow a$. Then $z_{2} a u y_{2} z_{2}$ is a cycle of length four, which disjoints from T_{1}, a contradiction. This completes the proof of Case 1 .

Case 2. $\left|N_{D}^{+}(u) \cap V\left(T_{1}\right)\right|=2$ and $\left|N_{D}^{+}(u) \cap V\left(T_{2}\right)\right|=2$.
Without loss of generality, we may assume that $\left\{y_{1}, z_{1}, y_{2}, z_{2}\right\}$ $=N_{D}^{+}(u)$. By Lemma 2.2, one of x_{1} and x_{2} belongs to $V\left(C^{\prime}\right)$. Without loss of generality, we may suppose that $x_{1} \in V\left(C^{\prime}\right)$. Then $x_{1} u y_{1} z_{1} x_{1}$ and T_{2} are two disjoint cycles of different length, a contradiction. This completes the proof of Case 2.

https://daneshyari.com/en/article/10523968

Download Persian Version:

https://daneshyari.com/article/10523968

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 9512061024.

 E-mail addresses: gysh2004@gmail.com (Y. Gao), mading0202@sina.com (D. Ma).

