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1. Group polyhedra and homomorphic lifting

Most known binary group facets [3,4] are binary (or have only
(0:1)-coefficients) with an incomplete support; i.e., not all of the
coefficients are non-zero. In this paper, we identify families of non-
binary facets with complete support and show that together with
known (0:1)-facets and lifted facets, these inequalities completely
describe the binary group polyhedron in low dimension.

The group problem was introduced by Gomory [4], and he
gave some results specific to binary and ternary groups. Here, we
only consider binary groups: finite abelian groups each element of
which has order two. It can be shown that such groups are isomor-
phic to the direct product of cyclic groups of order two, denoted as
C,. The direct product C3 is isomorphic to the group of 0-1 vectors
with n elements with the group operation being addition modulo
2. For applications of binary groups, we refer to Gastou and Johnson
[3] and Johnson [7]. B
_ A homomorphism is a mapping ¢ : G — G, from group G onto
G, which satisfies

(g +h) =¢@ +eh forvg hed.
The kernel of ¢ is the subset K of G, where
K={geG:p(g =0},
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where 0 is the zero of G. It is well-known that K is a subgroup of G.
For every element g € G, the kernel K defines a coset g + K, where

g+K={th:h=g+kfork € K}.

The image G of ¢ is isomorphic to the factor group G/K of cosets,
and every element of G in a coset g+K maps onto the same element
of G.

GivenagroupG,letM C G\{0}andb € M.Let M be anonempty
subset of a group G without 0 and let b be a non-zero element of G.
The group problem is to minimize ) _,_,, Csts Subject to

thg = b,

geM

geM

where the variables t; are nonnegative integers and every element
cg of the objective function is nonnegative. The group polyhedron
P(G, M, b) is the convex hull of the solution vectors (t; : g € M) to
the group problem. The group polyhedron is known in [4] to be full-
dimensional and the facets are uniquely represented by inequali-
ties with the right-hand side 1. If the underlying group G is binary,
P(G, M, b) is a binary group polyhedron. If M = G \ {0}, we call
P(G, M, b) the master group polyhedron and denote it simply by
P(G, b). In his work on group polyhedra and master group polyhe-
dra, Gomory defined families of facets of such polyhedra when the
underlying group is cyclic or a binary group. For example, Gomory
and Johnson defined two-slope facets for master cyclic group poly-
hedrain [5] and [6]. Basu, Hildebrand, Képpe and Molinaro [1] and
Cornuéjols and Molinaro [2] have defined other families of facets
for such polyhedra, including (three or more)-slope theorems.
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Gomory [4] showed that for any master group polyhedron
P(G, b), any homomorphism ¢ of G onto the group H with ¢ (b) # 0
and any facet 7 of P(H, ¢(b)), one obtains a facet = for P(G, b) by
taking

(@) — {g«o(g))

He refers to this facet 7 as obtained by lifting up & from H to G
via the homomorphism ¢. We will refer to any facet obtained us-
ing this procedure as a homomorphic lifting. He also gives a con-
verse theorem: every facet 7 of G with any coefficient 7, = 0
comes from a homomorphic lifting where the kernel K = {k €
G\ {0} : m(k) = 0}and b ¢ K. In other words, large facets with
zero coefficients of a master group polyhedron can be obtained
from smaller facets with no zero coefficient (complete support) of
master group polyhedra of factor groups. In this paper, we identify
families of non-binary facets with complete support for the mas-
ter binary group polyhedron. We assume that b = 1, where 1 is
a vector of all 1's. The binary group facets of P(G, b) with b # 1
can be induced [4] from those with b = 1 by automorphism; i.e.,
one-to-one homomorphism.

ifp(g) #0,
otherwise.

2. Binary group facets with complete support

For a master group polyhedron P(G, b), the nonnegativity con-
straints are known to be facets and will be referred to as the triv-
ial facets. All nontrivial facets will be referred to as group facets
(or binary group facets if G is binary). Although there are exponen-
tially many group facets (see [6]) for the master group problem,
Gomory [4] has shown that all group facets can be characterized
using polynomially many subadditive inequalities:

Theorem 1 (Gomory [4]). The coefficient vectors m € RMO of the
group facets mt > m, > 0 are the extreme rays to the following
system describing the subadditive cone S(G, b); forall g, g’ € G\
{0, b} withg + g’ # 0,

1. 7(g) + (b — g) = mp, (complementarities)

2. n(g) + (g') = n(g +g'), (subadditivities)

3.7t >0.

Note that b — g = b + g (modulo 2) in the complementarities
because the “—" and “+4” operation are equivalent modulo 2. We
define the group facet polytope IT(G, b) to be the convex hull of
the group facets m with 7, = 1. In other words, I1(G, b) is the
intersection of the subadditive cone S(G, b) with 7, = 1.

Consider a subgroup H of a binary group G of index 2, i.e., |G| =
2|H|. Gomory [4] has shown that if b ¢ H,

=1 (n
g¢H

is a group facet that is referred to as a binary facet ora (0 : 1)-facet.
We next identify some facets with non-binary coefficients.

2.1. (5 : %)-facets

For a subgroup H of a binary group G of index 2, define =",
where 7} = 2/3forg € Hand n)) = 1/3forg € G\ H. We

now show that =¥ is a group facet of P(G, b) by proving that it is
an extreme point of I7(G, b).

Theorem 2. Let n > 4.If H is a subgroup of the binary group G = C}
ofindex2 and b € G\ H, then n" = (1;')gcc\(0) is a group facet of
P(G, b) where
nl =1/3 forg € G\ (HU{b}),

=2/3 forg e H\{0},

=1 forg=>h.

Proof. We can easily see that 7' is not a facet of P(G, b) when
n < 3. Assume n > 4. The nonnegative vector 7' defined in the
theorem satisfies the complementarities and the subadditivities in
Theorem 1: The complementary element of g with respect to b is
b — g = b + g because the inverse of g is itself. The subgroup H
contains either g or its complementary element b + g,and H + b
contains the other. The complementarities follow that one of rcg”
and n;+b is 1/3 and the other is 2 /3. The subadditivities hold true,
aswf + 7l =1/34+1/3 < nll,; = 1 would contradict the
complementarity.

In order to show that 7/ is a group facet, we show that 7/ is
uniquely determined by its binding constraints among the system
in Theorem 1. Consider the following binding constraints,

Thy+b + Thy+b = TChy+hy» (2)

where hq, h, € H \ {0} and h; # h;.
Assume that a vector 7’ in RM® satisfies the complementari-
ties and the equations in (2). Then, for every non-zero h; € H,

r_ 1
Ty = E Ththy

heH\{0,h1}

= Z (Thyb + Thin)

heH\{0,h1}

= (H =m0+ D Ty
heH\{0,hy}

= (H| = 3)my, 4 + Z Thps
heH\(0)

heH\{0,h1}

which implies
(IH| = &7y, 4 = =73, 4 + (HI = 3)mh, 4,

_ o ’
= =Ty 4p T+ E Ty E: Thyb

heH\{0,hq} heH\{0}
o I o ’
= =Ty + Ty — Ty yp + TTh Thib
heH\{0,h;) heRN{0)
I ’ ’ -
= =7y + (7Tp, + Ty, 1) — Thysp

+ Z = Zﬂfé%

heH\{0,h1} heH\{0}

o ’ o ’
= =Ty + T, + § Ty § Thib

heH\{0,hy} heH\{0}

=—-1+ Z 7'(,:— Z JT,;_H,. (3)

heH\{0} heH\{0}

Since the right-hand side (3) is constant for all h; € H, the com-
ponents 7, are constant (= f) over all non-zero h € H. The
components sr; are shown to be constant (= «) over all non-zero
h € H by using the complementarities. Eq. (2) implies that 28 = «.
The result thus follows. O

The proof of Theorem 2 is instructive and the proof technique
can be used for the remaining theorems among which Theorem 5
is most complicated and is proved in Section 3. We generalize
Theorem 2 to a subgroup H of index 4 (|G| = 4|H|) as follows:

Theorem 3. For n > 5, let H be a subgroup of the binary group
G = (] ofindex4andb € G\ H.If a € G\ (HU (b+H)), we
have the factor group

G/H={H,a+H,a+b+H,b+ H}.
Let (S, T) be a nonempty partition of H with |S| > 3 and |T| > 3.If
U=(@+S)U@+b+T)U((b+H)\ {b}),
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