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a b s t r a c t

We identify binary group facets with complete support and non-binary coefficients. These inequalities
can be used to obtain new facets for larger problems using Gomory’s homomorphic lifting.
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1. Group polyhedra and homomorphic lifting

Most known binary group facets [3,4] are binary (or have only
(0:1)-coefficients) with an incomplete support; i.e., not all of the
coefficients are non-zero. In this paper, we identify families of non-
binary facets with complete support and show that together with
known (0:1)-facets and lifted facets, these inequalities completely
describe the binary group polyhedron in low dimension.

The group problem was introduced by Gomory [4], and he
gave some results specific to binary and ternary groups. Here, we
only consider binary groups: finite abelian groups each element of
which has order two. It can be shown that such groups are isomor-
phic to the direct product of cyclic groups of order two, denoted as
C2. The direct product Cn

2 is isomorphic to the group of 0–1 vectors
with n elements with the group operation being addition modulo
2. For applications of binary groups,we refer toGastou and Johnson
[3] and Johnson [7].

A homomorphism is a mapping ϕ : G → Ḡ, from group G onto
Ḡ, which satisfies

ϕ(g + h) = ϕ(g) + ϕ(h) for ∀g, h ∈ G.

The kernel of ϕ is the subset K of G, where

K = {g ∈ G : ϕ(g) = 0̄},
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where 0̄ is the zero of Ḡ. It is well-known that K is a subgroup of G.
For every element g ∈ G, the kernel K defines a coset g + K , where

g + K = {h : h = g + k for k ∈ K}.

The image Ḡ of ϕ is isomorphic to the factor group G/K of cosets,
and every element ofG in a coset g+K maps onto the same element
of Ḡ.

Given a groupG, letM ⊆ G\{0} and b ∈ M . LetM be a nonempty
subset of a group Gwithout 0 and let b be a non-zero element of G.
The group problem is to minimize


g∈M cg tg subject to

g∈M

gtg = b,

where the variables tg are nonnegative integers and every element
cg of the objective function is nonnegative. The group polyhedron
P(G,M, b) is the convex hull of the solution vectors (tg : g ∈ M) to
the groupproblem. The grouppolyhedron is known in [4] to be full-
dimensional and the facets are uniquely represented by inequali-
ties with the right-hand side 1. If the underlying group G is binary,
P(G,M, b) is a binary group polyhedron. If M = G \ {0}, we call
P(G,M, b) the master group polyhedron and denote it simply by
P(G, b). In his work on group polyhedra and master group polyhe-
dra, Gomory defined families of facets of such polyhedra when the
underlying group is cyclic or a binary group. For example, Gomory
and Johnson defined two-slope facets formaster cyclic group poly-
hedra in [5] and [6]. Basu, Hildebrand, Köppe andMolinaro [1] and
Cornuéjols and Molinaro [2] have defined other families of facets
for such polyhedra, including (three or more)-slope theorems.
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Gomory [4] showed that for any master group polyhedron
P(G, b), any homomorphismϕ ofG onto the groupH withϕ(b) ≠ 0
and any facet π̄ of P(H, ϕ(b)), one obtains a facet π for P(G, b) by
taking

π(g) =


π̄(ϕ(g)) if ϕ(g) ≠ 0,
0 otherwise.

He refers to this facet π as obtained by lifting up π̄ from H to G
via the homomorphism ϕ. We will refer to any facet obtained us-
ing this procedure as a homomorphic lifting. He also gives a con-
verse theorem: every facet π of G with any coefficient πg = 0
comes from a homomorphic lifting where the kernel K = {k ∈

G \ {0} : π(k) = 0} and b ∉ K . In other words, large facets with
zero coefficients of a master group polyhedron can be obtained
from smaller facets with no zero coefficient (complete support) of
master group polyhedra of factor groups. In this paper, we identify
families of non-binary facets with complete support for the mas-
ter binary group polyhedron. We assume that b = 1, where 1 is
a vector of all 1’s. The binary group facets of P(G, b) with b ≠ 1
can be induced [4] from those with b = 1 by automorphism; i.e.,
one-to-one homomorphism.

2. Binary group facets with complete support

For a master group polyhedron P(G, b), the nonnegativity con-
straints are known to be facets and will be referred to as the triv-
ial facets. All nontrivial facets will be referred to as group facets
(or binary group facets if G is binary). Although there are exponen-
tially many group facets (see [6]) for the master group problem,
Gomory [4] has shown that all group facets can be characterized
using polynomially many subadditive inequalities:

Theorem 1 (Gomory [4]). The coefficient vectors π ∈ RG\{0} of the
group facets π t ≥ πb > 0 are the extreme rays to the following
system describing the subadditive cone S(G, b); for all g, g ′

∈ G \

{0, b} with g + g ′
≠ 0,

1. π(g) + π(b − g) = πb, (complementarities)
2. π(g) + π(g ′) ≥ π(g + g ′), (subadditivities)
3. π ≥ 0.

Note that b − g = b + g (modulo 2) in the complementarities
because the ‘‘−’’ and ‘‘+’’ operation are equivalent modulo 2. We
define the group facet polytope Π(G, b) to be the convex hull of
the group facets π with πb = 1. In other words, Π(G, b) is the
intersection of the subadditive cone S(G, b) with πb = 1.

Consider a subgroup H of a binary group G of index 2, i.e., |G| =

2|H|. Gomory [4] has shown that if b ∉ H ,
g∉H

tg ≥ 1 (1)

is a group facet that is referred to as a binary facet or a (0 : 1)-facet.
We next identify some facets with non-binary coefficients.

2.1. ( 1
3 :

2
3 )-facets

For a subgroup H of a binary group G of index 2, define πH ,
where πH

g = 2/3 for g ∈ H and πH
g = 1/3 for g ∈ G \ H . We

now show that πH is a group facet of P(G, b) by proving that it is
an extreme point of Π(G, b).

Theorem 2. Let n ≥ 4. If H is a subgroup of the binary group G = Cn
2

of index 2 and b ∈ G \ H, then πH
= (πH

g )g∈G\{0} is a group facet of
P(G, b) where

πH
g = 1/3 for g ∈ G \ (H ∪ {b}),

= 2/3 for g ∈ H \ {0},
= 1 for g = b.

Proof. We can easily see that πH is not a facet of P(G, b) when
n ≤ 3. Assume n ≥ 4. The nonnegative vector πH defined in the
theorem satisfies the complementarities and the subadditivities in
Theorem 1: The complementary element of g with respect to b is
b − g = b + g because the inverse of g is itself. The subgroup H
contains either g or its complementary element b + g , and H + b
contains the other. The complementarities follow that one of πH

g

and πH
g+b is 1/3 and the other is 2/3. The subadditivities hold true,

as πH
g + πH

h = 1/3 + 1/3 < πH
g+h = 1 would contradict the

complementarity.
In order to show that πH is a group facet, we show that πH is

uniquely determined by its binding constraints among the system
in Theorem 1. Consider the following binding constraints,

πh1+b + πh2+b = πh1+h2 , (2)

where h1, h2 ∈ H \ {0} and h1 ≠ h2.
Assume that a vector π ′ in RG\{0} satisfies the complementari-

ties and the equations in (2). Then, for every non-zero h1 ∈ H ,
h∈H\{0,h1}

π ′

h =


h∈H\{0,h1}

π ′

h+h1

=


h∈H\{0,h1}


π ′

h1+b + π ′

h+b


= (|H| − 2)π ′

h1+b +


h∈H\{0,h1}

π ′

h+b

= (|H| − 3)π ′

h1+b +


h∈H\{0}

π ′

h+b,

which implies

(|H| − 4)π ′

h1+b = −π ′

h1+b + (|H| − 3)π ′

h1+b

= −π ′

h1+b +


h∈H\{0,h1}

π ′

h −


h∈H\{0}

π ′

h+b

= −π ′

b + π ′

b − π ′

h1+b +


h∈H\{0,h1}

π ′

h −


h∈H\{0}

π ′

h+b

= −π ′

b + (π ′

h1 + π ′

h1+b) − π ′

h1+b

+


h∈H\{0,h1}

π ′

h −


h∈H\{0}

π ′

h+b

= −π ′

b + π ′

h1 +


h∈H\{0,h1}

π ′

h −


h∈H\{0}

π ′

h+b

= −1 +


h∈H\{0}

π ′

h −


h∈H\{0}

π ′

h+b. (3)

Since the right-hand side (3) is constant for all h1 ∈ H , the com-
ponents π ′

h+b are constant (= β) over all non-zero h ∈ H . The
components π ′

h are shown to be constant (= α) over all non-zero
h ∈ H by using the complementarities. Eq. (2) implies that 2β = α.
The result thus follows. �

The proof of Theorem 2 is instructive and the proof technique
can be used for the remaining theorems among which Theorem 5
is most complicated and is proved in Section 3. We generalize
Theorem 2 to a subgroup H of index 4 (|G| = 4|H|) as follows:

Theorem 3. For n ≥ 5, let H be a subgroup of the binary group
G = Cn

2 of index 4 and b ∈ G \ H. If a ∈ G \ (H ∪ (b + H)), we
have the factor group

G/H = {H, a + H, a + b + H, b + H}.

Let (S, T ) be a nonempty partition of H with |S| ≥ 3 and |T | ≥ 3. If

U = (a + S) ∪ (a + b + T ) ∪ ((b + H) \ {b}),
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