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a b s t r a c t

To examine the variance reduction from portfolios with both primary and derivative assets we develop a
mean–variance Markovitz portfolio management problem. By invoking the delta–gamma approximation
we reduce the problem to a well-posed quadratic programming problem. From a practitioner’s
perspective, the primary goal is to understand the benefits of adding derivative securities to portfolios of
primary assets. Our numerical experiments quantify this variance reduction from sample equity portfolios
to mixed portfolios (containing both equities and equity derivatives).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The main objective in portfolio management is the tradeoff
between risk and return. Markovitz, [9,10] studied the problem
of maximizing portfolio expected return for a given level of risk,
or equivalently minimizing risk for a given expected return. One
limitation of Markovitz’s model, however, is that it considers only
portfolios of primary assets. Mixed portfolios have been a topic of
recent research from different perspectives with varying success.
We list a few of the known results, and then describe our results in
relation to the current research.

Recently, [11,1] looked at the optimalmanagement of portfolios
containing primary and derivative assets. In [11], the author
introduced a technique for optimizing CVaR (Conditional Value at
Risk) of a portfolio. The paper [1] observes that CVaRminimization
for a portfolio of derivative securities is ill-posed. Furthermore, [1]
has shown that this predicament can be overcome by including
transaction costs.

[2,3,6] considered portfolio optimizationwith non-standard as-
set classes. In particular, [2] looked at the problem of maximizing
expected exponential utility of terminalwealth under a continuous
time model by trading a static position in derivative securities and
a dynamic position in stocks. Separately, in a one periodmodel, [3]
analyzed the optimal investment and equilibrium pricing of pri-
mary and derivative instruments. Additionally, [6] has shown how
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to approximate dynamic positions in options by minimizing the
mean-squared error.

To the best of our knowledge, this paper is the first work to con-
sider the mean–variance Markovitz portfolio management prob-
lem in a one period model with derivative assets. For a portfolio
containing many assets (primary and derivative) the estimation of
the correlationmatrix can be challenging. Practitioners often solve
this difficulty by projecting portfolios onto a reduced set of factors.
Projection methods motivate our approach to the mean–variance
problem. However, if parametric approaches are used (we work
in a multivariate normally distributed returns framework), this
projection method creates another problem. Since projections
are often non-linear, we must overcome non-linearities by the
delta–gamma approximation.

The delta–gamma approximation is well known and often
used in risk management and portfolio hedging. In industry
practice this approximation works well for sufficiently small time
intervals. By performing the delta–gamma approximation, the
portfolio management problem with derivative assets is reduced
to a quadratic program; however, the covariance matrix of the
factors may not be positive definite. Since data are usually built
from inconsistent datasets, this issue appears in some financial
optimization problems. For example, for portfolios of stocks, the
sample correlation matrix is just an approximate correlation, and
hence need not be positive definite. This problem is addressed
by [5,7]. These works focused on the extraction of a positive
semi-definite variance–covariance matrix, obtained through the
solution of a second-order conic mathematical programming
problem. It is a way to convexify an a priori non convex problem.
In [5,7], the smallest distortion of the original matrix which
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satisfies the desired properties (e.g., being a correlation matrix) is
obtained by using Frobenius norm.

Our main motivation is to investigate the variance reduction
portfolios achieved through the addition of derivative assets
compared against straight equity portfolios. Options can be
considered as a type of portfolio insurance. We postulate that
by allowing investment in this asset class, one should be able to
reduce the risk profile of optimal mean–variance portfolios (here
risk is measured as variance). Therefore, it appears only important
to study the risk reduction due to investing in options. We explore
the size of this risk reduction, and how the risk reduction profile
varies across different derivative structures.

To address these questions we implement several numerical
experiments. One finding is that the largest variance reduction is
obtained by adding options on one stock. It is interesting to point
out that the optimal portfolio variance reduction is a unimodal
function of annual returns (it increases for small values of annual
returns, reaches its peak and then decreases for larger values of
annual returns). The maximum variance reduction is ∼85%–90%,
and it occurs with a portfolio return per annum of ∼12%–15%.

Our results can be applied to the problem of pricing and
hedging in incomplete markets. For instance, we can consider
instruments written on non-tradable factors (e.g., temperature),
and they can be hedged with tradable instruments which are
highly correlated (this procedure is called cross hedging). Take
weather derivatives (e.g., HDD or CDD) as an example; energy
prices are considered as the traded correlated instrument (in
California a high correlation can be observed between temperature
and energy prices). Perfect hedging is not possible in this paradigm.
Minimizing the variance of the hedging error can be captured
as a special case of mean–variance optimization problem for a
portfolio of primary and derivative instruments. A survey paper on
mean–variance hedging and mean–variance portfolio selection is
explored in [12].

Another possible application of our results is the hedging of
long maturity instruments with short maturity ones. As is well
known, the market for long maturity instruments is illiquid, thus
the issuers use (static) hedging portfolios of the more liquid short
maturity instruments. The interested reader can Ref. [4].

This paper is organized as follows. In Section 2 we present
the model; Section 3 introduces the delta–gamma approximation;
Section 4 presents the reduction to quadratic programs. Numerical
experiments are provided in Section 5; and Section 6 concludes our
work.

2. The model

Portfolio returns are derived from the return of individual
positions; however, in practice, it is not advisable to model the
positions individually due to the latent correlation structure. If we
have m instruments in our portfolio, we would need m separate
volatilities, plus data on m(m−1)

2 correlations, so in total m(m+1)
2

pieces of information. For largem this may be difficult.
The resolution is to map m instruments onto a reduced set of

risk factors, n. The mapping can be non-linear (e.g., BS (Black–
Scholes formula) for options). Let us assume that the factors are
represented by a stochastic vector process S = (S1, S2, . . . , Sn),
which at all times t ∈ (0, ∞) is assumed to be of the form

S(t) = ΣWt (2.1)

where Σ is the variance–covariance matrix, which we take to be
positive definite (themethodology proposed in [5,7] can be applied
when the positive definite assumption fails), and Wt is a standard
Brownian motion on a canonical probability space (Ω, F , P). The
portfolio value at time t , denoted by V (S, t), is of the form

V (S, t) =

m
k=1

xk(t)Vk(S, t), (2.2)

where Vk(S, t), k = 1, . . . ,m, represents the value of the indi-
vidual instruments (mapped onto the risk factors), and xk(t), k =

1, . . . ,m, stands for the number of shares of instrument k held in
the portfolio at time t . We choose the portfolio mix xk(t), k =

1, . . . ,m, such that the portfolio return, 1V , over time interval
[t, t + 1t],

1V = V (S + 1S, t + 1t) − V (S, t), (2.3)

is optimized as described below. It turns out to bemore convenient
to work with the vector of actual proportions of wealth invested in
the different assets, thus, at time t ∈ (0, ∞), we introduce portfo-
lio weights wk(t), k = 1, . . . ,m, by

wk(t) =
xk(t)
V (S, t)

, k = 1, . . . ,m. (2.4)

In the following, we posit the Markowitz mean–variance type
problem: given some exogenous benchmark return, re(t), at time t
an investor wants to choose among all portfolios having the same
return, re(t), the one with minimal variance, Var(1V ):

(P1) min
w

Var(1V )

s.t. E(1V ) = re(t),
m

k=1

wk(t)Vk(S, t) = 1.

Another possible portfolio management problem is to choose the
portfolio with minimal variance:

(P2) min
w

Var(1V )

s.t.
m

k=1

wk(t)Vk(S, t) = 1.

There are some difficulties in solving (P1) and (P2). First, we
may not be able to determine the moments of 1V since 1V non-
linearly depends on changes in the underlying factors. Moreover,
it is not obvious what distribution 1V would follow—even if we
perfectly learnt the pdf of 1S. If we only required the moments
of 1V , the situation would not improve since the integration of
moments might be intractable. One way out of this predicament is
to use the delta–gamma approximation.

3. Delta–gamma approximation

The delta–gamma approximation states that a portfolio change
during a short time period resulting from the change of underly-
ing factors can be approximated by some second order polynomial
function, the coefficients of which are given by the portfolio’s sen-
sitivities, such as the portfolio delta, gamma and theta. This ap-
proximation is an important tool in riskmanagement and hedging;
for instance, to hedge a portfolio of derivatives with respect to the
underlying’s change, the delta–gammaapproximation is employed
to match sensitivities of the portfolio with those of the hedging in-
struments.

Mathematically speaking, this approximation is a second order
Taylor expansion of the portfolio’s change, 1V , over the time
interval [t, t + 1t]:

1V ≈ δV =
∂V
∂t

1t + δT1S +
1
2
1STΓ 1S, (3.1)

where

δi =
∂V
∂Si

, Γij =
∂2V

∂Si∂Sj
, i = 1, . . . , n.
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