
Operations Research Letters 41 (2013) 710–714

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Approximation algorithm for the on-line multi-customer two-level
supply chain scheduling problem
Igor Averbakh ∗, Mehmet Baysan
Department of Management, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada

a r t i c l e i n f o

Article history:
Received 2 May 2013
Received in revised form
28 June 2013
Accepted 3 October 2013
Available online 11 October 2013

Keywords:
Supply chain scheduling
On-line algorithm
Competitive analysis
Integrated production–distribution
problems

a b s t r a c t

Amanufacturer has to process jobs released on-line anddeliver them to customers. Preemption is allowed.
Jobs are grouped into batches for delivery. The sum of the total flow time and the total delivery cost is
minimized. Deliveries to different customers cannot be combined. We present an on-line algorithm with
the competitive ratio bounded by 3+α, where α is the ratio of the largest processing time to the smallest
processing time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and problem statement

In supply chain scheduling problems it is required to coordinate
scheduling, batching, and delivery decisions, in order to minimize
the overall scheduling and delivery cost. Supply chain scheduling
problems were introduced by Hall and Potts [6] in the context of
three-level supply chains that involve customers, manufacturers,
and suppliers. Since then, various versions of supply chain schedul-
ing problems have been studied (see the literature reviews in
[1,2,5] and the survey [4]) in the off-line environment where full
information about future jobs (orders) is available in advance (fu-
ture is known).

In [1,2], two-level supply chain scheduling problems that in-
volve a manufacturer and customers (also known as integrated
production–distribution problems [1,4]) were studied in the on-line
environment, where future is unknown. The basic setting consid-
ered in [1,2] and in this paper is as follows. Suppose that there are
several customers 1, . . . ,m and one manufacturer. Customer k re-
leases jobs Jk1, . . . , Jkpk on-line at times rk1, . . . , rkpk , 0 ≤ rk1 ≤

· · · ≤ rkpk , respectively. The jobs are released by means of phone
or electronic orders so that themanufacturer can start processing a
job as soon as it is released. At any instant, there is no information
about the number, release and processing times of future jobs; the
processing time of a job becomes known when the job is released.

∗ Corresponding author.
E-mail addresses: averbakh@utsc.utoronto.ca (I. Averbakh),

m.baysan@utoronto.ca (M. Baysan).

Processing times are positive. The manufacturer must process the
jobs and deliver themback to the customers. Themanufacturer can
process no more than one job at a time; therefore, in the remain-
der of the paper themanufacturer will be called a server. Processed
jobs will be called completed or finished. Preemption is allowed and
does not require restarts; that is, a preempted job can be resumed
fromwhere itwas stopped and does not have to be started from the
scratch. To minimize the total cost, the jobs may not be delivered
as soon as they are finished, and may wait until some other jobs
are also finished, so that they can be delivered in batches. Deliver-
ies to different customers cannot be combined (the case of ‘‘direct
deliveries’’). Let Di > 0 be the cost of a delivery to customer i; it
does not depend on the number of delivered jobs.

The flow time of a job is the time between its release and its
delivery to the customer. We consider the problem of minimizing
the sum of the total flow time of all jobs and the total delivery
cost; this problemwill be referred to as ProblemM . Transportation
time of a delivery is assumed to be 0 (nonzero transportation times
would increase the total flow time of each solution by the same
constant and would not change validity of our results).

An on-line algorithmA for ProblemM is calledρ-competitive, for
some ρ ≥ 1, if for any problem instance the objective value of the
solution obtained by algorithmA is boundedbyρ times the optimal
off-line objective value for the instance plus a constant. (Since the
scheduling problems that we consider are scalable, the additive
constant can be deleted from the definition.) The competitive ratio
of algorithm A is the infimum of the set of all values ρ such that
algorithm A is ρ-competitive.

In [2], an on-line algorithm with competitive ratio 2 was pre-
sented for the single-customer version of Problem M (m = 1)

0167-6377/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.orl.2013.10.002

http://dx.doi.org/10.1016/j.orl.2013.10.002
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2013.10.002&domain=pdf
mailto:averbakh@utsc.utoronto.ca
mailto:m.baysan@utoronto.ca
http://dx.doi.org/10.1016/j.orl.2013.10.002


I. Averbakh, M. Baysan / Operations Research Letters 41 (2013) 710–714 711

which will be referred to as Problem S, and it was shown that
no on-line algorithm for the problem can have a better compet-
itive ratio. For Problem M , an on-line algorithm was presented
in [2] with an upper bound 2γ on the competitive ratio, where
γ = (

m
i=1 Di)/(min{Di, i ∈ [1 : m]}). In [1], the case of ca-

pacitated deliveries where each delivery can take no more than
C jobs for some integer C ≥ 1 was considered, and on-line algo-
rithms were presented for capacitated Problems S andM and their
modifications. The competitive ratio of the algorithm for the ca-
pacitated Problem S is 2; an upper bound 2γ ′ was obtained for the
competitive ratio of the algorithm for the capacitated Problem M ,
where γ ′

= min{C, 1+ (1−
1
C )

m
i=1 Di

min{Di,i∈[1:m]}
}. Note that if deliver-

ies to different customers have the same cost, then 2γ = 2m and
2γ ′

= 2 · min{C, 1 + (1 −
1
C )m}; thus, the obtained performance

guarantees for the algorithms from [1,2] for ProblemM are quickly
getting bad as the number of customers increases if the delivery
capacity is not small.

The main contribution of this paper is an on-line algorithm for
Problem M (with capacitated or uncapacitated deliveries) which
is (3 + α)-competitive, where α is the ratio of the processing
time of the longest job to the processing time of the shortest
job. The bound does not depend on m and provides reasonable
performance guarantees for problems with limited variability in
processing times.

We define the following terminology.

• A full schedule is a schedule that specifies both when jobs are
processed and the times and contents of deliveries.

• A job schedule is a schedule that specifies only when jobs are
processed but ignores deliveries.

• The delay time of a job is the time between the completion of
the job and its delivery.

• The currently active delay (CAD) of a job at an instant between
the completion of the job and its delivery is the time elapsed
since the job’s completion.

• The finishing cost of a job is the time between its release and
completion.

• An available job is a job that has already been released but is not
yet finished.

• A normal schedule is a schedule where the server cannot be idle
if there are available jobs.

The flow time of a job is clearly the sum of its delay time and
finishing cost. For any full schedule S, let F(S) (respectively, Q (S))
denote the total finishing cost (respectively, the total delay time)
of all jobs in S, and let Z(S) denote the objective value for S (the
sum of the total flow time and the total delivery cost).

The shortest remaining processing time (SRPT) rule prescribes to
process at each instant t the job with the smallest remaining pro-
cessing time among all already released unfinished jobs,with some
unambiguous rule (e.g., lexicographic) for breaking ties. The SRPT
rule can be implemented on-line. It is well known (see, e.g., [3])
that for the classical preemptive problem of minimizing the total
flow time (which is equivalent to the special case of Problem M
with Di = 0, i = 1, . . . ,m), the SRPT rule provides an optimal
solution.

Unless specified explicitly, deliveries are assumed to be
uncapacitated; the capacitated case will be discussed separately in
Section 5.

2. An algorithm and its performance

A pseudo-schedule for a customer i, denoted by PS(i), is an
imaginary schedule of jobs of customer i and the corresponding
deliveries, obtained by Algorithm PS(i) below for the imaginary
situation where only the jobs of customer i are present.

Algorithm PS(i). Schedule the jobs of customer i according to the
SRPT rule. Delivery to customer i ismade as soon as the total CAD of
finished undelivered jobs of customer i is equal toDi; each delivery
contains all finished undelivered jobs of customer i.

Algorithm PS(i) can be implemented on-line.
The delivery instants in PS(i) will be called trigger instants for

customer i. For a trigger instant τ > 0 for customer i, J(τ , i) will
denote the set of jobs of customer i delivered at τ in PS(i). Clearly,
a job can be preempted in PS(i) only at the release time of another
job. The pieces of jobs that are processed without preemption in
PS(i) are called job parts for customer i or simply job parts if the
choice of a customer is clear from the context or unimportant. A
job of customer i that is preempted k times in PS(i) has k + 1 job
parts.

Now we present Algorithm GS (GS stands for a ‘‘global sched-
ule’’) that obtains a full schedule for Problem M; this full sched-
ule will be denoted by SA. At any instant, each job will have a
status of an ordinary job or an extra job. Initially, all jobs are or-
dinary. Some jobs become extra jobs as time goes. An extra job
never becomes ordinary again. Job parts have the same status as
the corresponding jobs. The idea of the algorithm is as follows. In
the single-customer case, if only jobs of a customer i are present,
the pseudo-schedule PS(i) obtained by Algorithm PS(i) has total
cost that is at most twice the total cost of an optimal off-line so-
lution [2]. This motivates us to try to build a full schedule for
the multi-customer case from the pseudo-schedules PS(i), i =

1, . . . ,m. If the pseudo-schedules do not overlap (that is, if at any
instant, only in at most one of the pseudo-schedules a job is being
processed), then clearly the full schedule obtained by superimpos-
ing the pseudo-schedules for all customers will also have a total
cost which is at most twice the total cost of an optimum off-line
solution. The difficulty occurs when pseudo-schedules overlap,
because resolving conflicts will inevitably delay the completion
of some jobs. In resolving the conflicts, we will make sure that:
(1) job parts are not preempted, (2) job parts of a customer are
processed in the same order as in the pseudo-schedule for this cus-
tomer, and (3) the server cannot be idle if there are available jobs.
We will schedule deliveries to each customer at all trigger instants
for this customer; these deliveries will be called ordinary deliveries.
An ordinary delivery for a customer imaynot be able to take all jobs
that are taken in the corresponding delivery of PS(i), because some
of these jobs may still be unfinished in SA; such jobs of customer i
get the status of ‘‘extra jobs’’ immediately after this ordinary deliv-
ery, and their unfinished job parts formabatch (called ej-batch, ‘‘ej’’
standing for ‘‘extra jobs’’). Each ej-batch is processed contiguously
without interruptions at a time chosen by the algorithm, and im-
mediately after this all jobs from the ej-batch are delivered in a spe-
cial extra delivery. Thus, SA may have twice as many deliveries for
customer i as PS(i). Below is a description of Algorithm GS as a set
of rules that define the actions of the server at any instant. We as-
sume that at its release time, each job has the status of an ordinary
job; the server is idle when there are no available jobs, and cannot
be idle otherwise. The server is considered idle before time 0.

Algorithm GS. Rule 1. Processing of a job part is never preempted.
Job parts of customer i are processed in the same order as in PS(i).

Rule 2. At each trigger instant τ > 0 for a customer i, an or-
dinary delivery is made for this customer that delivers all already
finished undelivered jobs from J(τ , i). After this, all remaining jobs
from J(τ , i) become extra jobs; their unfinished job parts form an
ej-batch.

Rule 3. If processing of an ej-batch has started, it continueswith-
out interruptions until the ej-batch is finished. As soon as an ej-
batch is finished, an extra delivery is made for the corresponding
customer that delivers all jobs of the ej-batch.



Download English Version:

https://daneshyari.com/en/article/10523980

Download Persian Version:

https://daneshyari.com/article/10523980

Daneshyari.com

https://daneshyari.com/en/article/10523980
https://daneshyari.com/article/10523980
https://daneshyari.com

