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a b s t r a c t

In this paper we consider a periodic review order-up-to inventory system with capacitated replenish-
ments, lost sales and zero lead time. We consider discrete demand. It is shown that the initial stock levels
of the different review periods form aMarkov chain andwe determine the transitionmatrix. Furthermore
we study for what probabilitymass functions of the review period demand theMarkov chain has a unique
stationary distribution. Finally, we present a method to determine the fill rate.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In several publications the fill rate is discussed for periodic re-
view inventory systemswith uncapacitated replenishment. For ex-
ample Johnson et al. [5] study different fill rate expressions for
inventory systems with backorders and normally distributed de-
mand and compare these expressions experimentally via simula-
tion experiments. The fill rate of an uncapacitated periodic review
inventory system with backorders and continuous period demand
is also studied in [8,10,7]. Sobel [8] discusses besides single-stage
systems also multistage systems and similar as in [5] the lead time
is assumed to be a multiple of the review period. This is not as-
sumed in Zhang et al. [10] and Silver et al. [7]. In [8,10] general
continuous demand and normal demand are considered, and [5,7]
focus on normal demand. Guijarro et al. [4] discuss fill rate defini-
tions and expressions for uncapacitated periodic review inventory
systems with lost sales and discrete demand. In this paper, how-
ever, periodic review inventory systems with a limited replenish-
ment capacity are studied. Unlike [5,8,10,7,4], in this paper the lead
time is assumed to be negligible. In a part of [8], capacity is also
considered, but in the context of multistage systems with process
limitations. In [2,1] finite horizon fill rates are considered and com-
pared with the infinite horizon fill rate.
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We consider a single-item inventory system that applies a
periodic review order-up-to inventory policy with lost sales and
zero lead time. Because of the lost sale assumption and the zero
lead time assumption, the inventory position (the number of
products on hand minus the number of products backlogged plus
the number of products on order) equals the stock level (the
number of products on hand). In such an inventory policy the stock
level is reviewedperiodically and in every reviewanorder is placed
to raise the stock level to a fixed level, the order-up-to level s
(a positive integer). We assume the demand during one review
period (period between two reviews) to be discrete with a given
probability mass function. We consider a review period to begin
when the order is placed and to end just before the next order
is placed. Following characteristics are assumed for the inventory
system under study: (i) the order is placed immediately after
review; (ii) the lead time is zero, i.e., the order arrives immediately
after the order is placed; (iii) the demands during different review
periods are independently and identically distributed; (iv) the
demand during a particular review period is independent of every
stock level at the beginning of a review period that precedes that
review period or coincides with that review period; (v) unsatisfied
demands result in lost sales; and (vi) replenishment is capacitated
with capacity c (a positive integer), i.e., if more than c products are
ordered, only c are delivered.

In this paper we determine the fill rate of a periodic review
inventory system with capacitated replenishments. A similar
problem was already studied by Mapes [6], who determined the
service level of a capacitated periodic review inventory system
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approximately by simulation. In this paper a new method to
determine the fill rate is presentedwhich is exact given the used fill
rate definition and the above stated six assumptions. Similarly as
in [9], we define the fill rate of a periodic review inventory system
as the proportion of the expected satisfied demand to the expected
demand (see (10) for the exact formula). Another definition used
in the literature for the fill rate (e.g. in [8,10]) is the expectation of
the proportion of the satisfied demand to the demand. According
to [2,10], both definitions agree if an infinite horizon is considered.

2. Determination of the fill rate

In this section we will determine the fill rate β of a periodic
review order-up-to inventory system with order-up-to level s and
replenishment capacity c. We assume c < s because when c is
greater than or equal to s replenishment is not capacitated. Let Dt
be the random variable associated with the demand during the
review period t , It the random variable associated with the stock
level at the beginning of review period t , fD the probability mass
function of Dt (with the set of the integers as domain and value
zero for negative integers) and fIt the probability mass function of
It , for all t ∈ {1, 2, . . .}. We assume the stock level at the beginning
of the first review period to be c , c+1, . . . or s. Because of the used
inventory policy, the following holds:

It = min {s,max {It−1 − Dt−1, 0} + c} , for all t ∈ {2, 3, . . .}. (1)

We continue by first proving four theorems and then presenting
a method to find the fill rate based on these theorems. For (finite
state) the Markov chain theory we refer to [3], Chapter 4.

Theorem 1. I1, I2, I3, . . . is a Markov chain.

Proof. For proving Theorem 1, we need to prove the following:

P(It = it |It−1 = it−1 ∩ It−2 = it−2 ∩ · · · ∩ I1 = i1 )

= P(It = it |It−1 = it−1 ), for all t ∈ {2, 3, . . .}
and for all i1, . . . , it ∈ {c, c + 1, . . . , s} for which
P(It−1 = it−1 ∩ · · · ∩ I1 = i1) ≠ 0 and

P(It−1 = it−1) ≠ 0. (2)

We start with the definition of conditional probability and (1)
and then use assumption (iv).

For all t ∈ {2, 3, . . .} and for all i1, . . . , it ∈ {c, c + 1, . . . , s} for
which P(It−1 = it−1 ∩ · · · ∩ I1 = i1) ≠ 0 and

P(It−1 = it−1) ≠ 0:

P(It = it
It−1 = it−1 ∩ It−2 = it−2 ∩ · · · ∩ I1 = i1 )

=
P(min


s,max


It−1 − Dt−1, 0


+ c


= it ∩ It−1 = it−1 ∩ · · · ∩ I1 = i1)

P(It−1 = it−1 ∩ · · · ∩ I1 = i1)
(3)

=
P(min


s,max


it−1 − Dt−1, 0


+ c


= it ∩ It−1 = it−1 ∩ · · · ∩ I1 = i1)

P(It−1 = it−1 ∩ · · · ∩ I1 = i1)
(4)

= P(min

s,max


it−1 − Dt−1, 0


+ c


= it ). (5)

Similarly, for all t ∈ {2, 3, . . .} and for all i1, . . . , it ∈ {c, c +

1, . . . , s} for which P(It−1 = it−1 ∩ · · · ∩ I1 = i1) ≠ 0 and
P(It−1 = it−1) ≠ 0:

P(It = it |It−1 = it−1 )

=
P(min {s,max {It−1 − Dt−1, 0} + c} = it ∩ It−1 = it−1)

P(It−1 = it−1)
(6)

=
P(min {s,max {it−1 − Dt−1, 0} + c} = it ∩ It−1 = it−1)

P(It−1 = it−1)
(7)

= P(min {s,max {it−1 − Dt−1, 0} + c} = it). (8)

Combination of (5) and (8) yields (2), which completes the
proof. �

Theorem 2. The element at row i and column j of the transition
matrix P of Markov chain I1, I2, I3, . . . with states c, c + 1, . . . , s is

pij =

∞
k=0

fD (k) δ (min {s,max {c − 1 + i − k, 0} + c}

− c + 1 − j) , for all i, j ∈ {1, 2, . . . , s − c + 1} (9)

with δ(x) = 1 if x = 1 and δ(x) = 0 if x ≠ 1 for every integer x.

Proof. For all i, j ∈ {1, 2, . . . , s − c + 1} and for all t ∈ {2, 3, . . .}
for which P(It−1 = c − 1 + i) ≠ 0:

pij = P (It = c − 1 + j |It−1 = c − 1 + i ) (10)

= P(min {s,max {c − 1 + i − Dt−1, 0} + c} = c − 1 + j) (11)

=

∞
k=0

fD(k)δ (min {s,max {c − 1 + i − k, 0}

+ c} − c + 1 − j) . (12)

For getting (10) we applied the definition of the transition ma-
trix and for getting (11) we used (8). �

Theorem 3. – If fD(c) ≠ 1, then for the Markov chain I1, I2, I3, . . .
the followingmatrix equation in the variable [fI(c) fI(c+1) · · · fI(s)]T ,
with 0 ≤ fI(c) ≤ 1, 0 ≤ fI(c + 1) ≤ 1, . . . and 0 ≤ fI(s) ≤ 1, has a
unique solution

1 1 1 · · · 1
p12 p22 − 1 p32 · · · ps−c+1 2
p13 p23 p33 − 1 · · · ps−c+1 3
· · · · · · · · · · · · · · ·

p1 s−c+1 p2 s−c+1 p3 s−c+1 · · · ps−c+1 s−c+1 − 1



×


fI(c)

fI(c + 1)
fI(c + 2)

· · ·

fI(s)

 =


1
0
0
· · ·

0

 (13)

and for these fI(c), fI(c + 1), . . . and fI(s)

limn→∞ fIn(i) = fI(i), for all i ∈ {c, c + 1, . . . , s}. (14)

– If fD(c) = 1, then fIt(i) = fI1(i) for all t ∈ {1, 2, . . .} and for all
i ∈ {c, c + 1, . . . , s}.

Proof. The transition matrix of the Markov chain is

P =

 p11 p12 · · · p1 s−c+1
p21 p22 · · · p2 s−c+1
· · · · · · · · · · · ·

ps−c−1 1 ps−c−1 2 · · · ps−c+1 s−c+1

 . (15)

Because of Theorem 2, we get Eq. (16) in Box I.
Case 1: fD(c) ≠ 1 and fD(x) = 0 for all x ∈ {0, 1, . . . , c − 1}.
By studying (16)we conclude that P is a lower triangularmatrix

and for every state the probability of going to state c in a number
of steps is positive and the probability of going from state i to state
j in a number of steps is zero if i < j. Therefore state c is recurrent
and the other states are transient.

Case 2: fD(c) ≠ 1 and fD(x) = 0 for all x ∈ {c + 1, c + 2, . . .}.
By studying (16) we conclude that P is an upper triangular

matrix and for every state the probability of going to state s in a
number of steps is positive and the probability of going from state
i to state j in a number of steps is zero if j < i. Therefore state s is
recurrent and the other states are transient.
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