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a b s t r a c t

Let (Qt)t∈R be the stationary workload process of a Lévy-driven queue, where the driving Lévy process is
light-tailed. For various functions T (u), we analyze

P
 T (u)

0
Qsds > u


for u large. For T (u) = o(

√
u) the asymptotics resemble those of the steady-state workload being

larger than u/T (u). If T (u) is proportional to
√
u they look like e−α

√
u for some α > 0. Interestingly, the

asymptotics are still valid when
√
u = o(T (u)), T (u) = o(u), and T (u) = βu for β suitably small.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let (Xt)t∈R be a two sided (one-dimensional) Lévy process
with X0 = 0. It is commonly known that under the stability
conditionEX1 < 0 the stationaryworkload process, given byQt :=

sups∈(−∞,t](Xt − Xs), is well-defined. It is clear that

1
T

 T

0
Qsds (1)

converges to the steady-state mean workload EQ0 as T → ∞, as a
direct consequence of the ergodic theorem.

However, so far, hardly any explicit results are available on the
random variable (1). The objective of the present paper is to study
the large-deviation probabilities

πT (u)(u) := P
 T (u)

0
Qsds > u


for u large and various types of functions T (u).

This study exhibits an important example—one could even
argue that this is actually the most fundamental example that
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would come to the mind to a queueing theorist—for which the
standard Donsker–Varadhan large deviation theory is not directly
applicable, even under natural assumptions. For instance, as we
shall see, if T (u) = uβ , with β < 1/EQ0, then the asymptotics
for πT (u)(u) are subexponential in u despite assuming that (Xt)t∈R
is a well-behaved, light-tailed Lévy process. In this paper we study
the impact of the function T (·) on the tail asymptotics of (1).

More specifically, under natural large deviation conditions, we
obtain the following results:

• For T (u) = o(
√
u) the asymptotics resemble those of the

steady-state workload being larger than u/T (u):

logπT (u)(u) ∼ log P

Q0 >

u
T (u)


.

Intuitively this resultmeans that in order to ensure that the area
is larger than u, essentially it is just required that Q0 is larger
than u/T (u).

• For T (u) of the form T
√
u, it is shown that

lim
u→∞

1
√
u
logπT (u)(u) = −α, (2)

for a constant α > 0 that is identified explicitly. For T below
an explicitly given threshold the most likely way in which the
rare event happens is such that,with overwhelming probability,
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the buffer never idles in [0, T
√
u]; for T above the threshold the

most likely path consists essentially of a single ‘big’ busy period.
• Finally, it is shown that (2) remains valid in the case

√
u =

o(T (u)) and T (u) = o(u), and also if T (u) = βu for β < 1/EQ0.

The special case of (Xt)t∈R corresponding to the Brownian
motion was already covered in [1]. Many steps in the analysis
presented in [1] used explicit properties of the Brownian motion
that are not available for light-tailed Lévy processes. Indeed, one of
the challenges of the present paper was to find their counterparts
for our more general light-tailed Lévy setting. In addition, the case
of T (u) = βu with β < 1/EQ0 was not covered in [1]. Also the
paper [4] is strongly related to ours. There πT (u)(u) is analyzed
for the number of customers in the M/M/1 queue, with T (u) =

βu with β < 1/EQ0. At the methodological level, the analysis
presented in this paper borrows elements from both [1,4].

Our paper is organized as follows. In Section 2 the main
objective is to find the asymptotics for the auxiliary object

ϱt := P
 t

0
Xsds/t2 > a


; (3)

this result, which is extensively used later in the paper, relies
precisely on Assumption 1.

Then Section 3 covers the case that T (u) is small relative to√
u; the analysis relies on straightforward bounds in combina-

tion with the classical bound P(Q0 > u) ≤ e−κu [2]. In Section 4,
T (u) is taken proportional to

√
u. Under the assumption that a

sample-path large deviation principle is valid, (2) is established.
Section 5 covers the cases (i)

√
u = o(T (u)) and T (u) = o(u),

and (ii) T (u) = βu with β < 1/EQ0. In [4] it was shown that
the probability that the sum of γ u Weibullian random variables,
each of them behaving as e−α

√
u, exceeding u, essentially behaves

as a single of those Weibullians exceeding u (in terms of logarith-
mic asymptotics). Relying on this property it is shown that (2) is
valid in this case as well. Finally, in Section 6 we discuss how to
relax some of the simplifying assumptions that we imposed, and
how to obtain results assuming non-stationary initial conditions.
Appendix provides some technical large deviation results.

2. Asymptotics of the integral of a Lévy process

The main objective of this section is to study large deviation
asymptotics for the auxiliary quantity ϱt defined in (3). In our
future analysis ofπT (u)(u), which is themain goal of the paper, only
logarithmic results for ϱt might suffice; however, because sharp
analysis is not difficult to perform and ϱt is of independent interest
we provide exact asymptotics.

First, define φ(ϑ) := logEeϑX1 and let Z(t) := t−1
 t
0 Xsds.

Introducing the notation ηt (ϑ) := E exp (ϑZ(t)) and applying
integration by parts, we obtain t

0
Xsds = tXt −

 t

0
sdXs =

 t

0
(t − s) dXs,

to conclude that

ηt (ϑ) = exp
 t

0
φ


ϑ


t − s
t


ds


= exp

t
 1

0
φ (ϑu) du


.

Consequently, we have that

χt (ϑ) :=
1
t
log ηt (ϑ) =

 1

0
φ (ϑu) du. (4)

The quantities χt (ϑ) and ηt (ϑ) play an important role in the
characterization of the exact asymptotics of ϱt . In order to develop

such asymptotics, we shall impose throughout the rest of the
paper the following assumption, which is fairly standard when
developing large deviation estimates.

Assumption 1 (Steepness to the Right). If φ (θ) = log(EeθX1), then
for every a > EX1 there exists θ∗ > 0 such that φ′ (θ∗) = a.

Using expression (4)we can obtain logarithmic asymptotics (via
an application, for instance, of the Gärtner–Ellis theorem, see [7])
leading to

lim
t→∞

1
t
log ϱt = − sup

ϑ≥0


aϑ −

 1

0
φ(ϑx)dx


=: −J(a). (5)

The convexity of φ (·) implies the convexity of ϑ →
 1
0 φ (ϑx) dx,

which in turn implies (together with the fact that φ(0) = 0, and
that a > φ′(0)/2) that the supremum in (5) is the same if one opti-
mizes over ϑ ∈ R. Moreover, it also follows that conditions for lo-
cal optimality imply global optimality in the optimization problem
underlying the definition of J(a). The next lemma, therefore, shows
that there is a unique optimizer ϑ⋆ to the previous optimization
problem.

Lemma 1. For every a > EY/2, there exists ϑ⋆ > 0 such that
a =

 1
0 φ′(ϑ⋆x)x dx.

Proof. Because of the monotone convergence theorem, it follows
that for ϑ ∈ (0, θ∗),

d
dϑ

 1

0
φ(ϑx)dx =

 1

0
φ′(ϑx)x dx,

where φ′ (·) is the derivative of φ (·). In turn, we have that 1

0
φ′(ϑx)dx =

1
ϑ2

 ϑ

0
φ′(y)y dy.

Wemust show that there exists a unique solution to the equation

ϑ2 a − φ′(0)/2


=

 ϑ

0
(φ′(y) − φ′(0))y dy. (6)

By the strict convexity of φ, which follows because Y is a non-
degenerate random variable in view of Assumption 1, we have that
φ′(y) − φ′(0) > 0 if y > 0. Moreover, both the right-hand side
and the left-hand side of Eq. (6) are convex functions of ϑ . The
derivative of the left-hand side is larger than the derivative of the
right-hand side for values of ϑ that are sufficiently close to zero,
but because of Assumption 1 eventually the derivative of the right-
hand side increases superlinearly in ϑ . So, eventually the right
hand side overtakes the left-hand side. By continuity, thus, there
exists a solution to Eq. (6). The solutionmust be unique because the
optimization problem underlying the definition of J(a) is a strictly
concave program. �

Now we are ready to sharpen the large deviation result (5).

Theorem 1. Suppose, in addition to Assumption 1, that φ (θ) < ∞

for θ in a neighborhood of the origin. Define

σ 2
:=

 1

0
φ′′(ϑ⋆x)x2 dx.

Then, as t → ∞,

ϱt := P (Z(t) > at) ∼
1

√
t

1
√
2πϑ⋆σ

e−tJ(a).
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