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diagnostic tests. In this paper, we propose semi-empirical likelihood based confidence
intervals for ROC curves of two populations, where one population is parametric and
the other one is non-parametric and both have missing data. After imputing missing
values, we derive the semi-empirical likelihood ratio statistic and the corresponding
likelihood equations. It is shown that the log-semi-empirical likelihood ratio statistic is
asymptotically scaled chi-squared. The estimating equations are solved simultaneously
to obtain the estimated lower and upper bounds of semi-empirical likelihood con-

Hot deck imputation fidence intervals. We conduct extensive simulation studies to evaluate the finite sample

ROC curve performance of the proposed empirical likelihood confidence intervals with various
sample sizes and different missing probabilities.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In medical research, the receiver operating characteristic (ROC) curve analysis has been extensively used in the
evaluation of diagnostic tests. Generally speaking, ROC curve is the entire set of possible true and false positive fractions
attained by dichotomizing a continuous test result T with different thresholds (Pepe, 2003). That is, the ROC curve is
ROC(-) = {(FPF(c), TPF(c)),c € (—o0,00)}. Alternatively, for a continuous-scale diagnostic test, let X and Y be the test results
from diseased subjects and non-diseased subjects respectively. At a given cutoff point c, the sensitivity and specificity are
defined as Se =Pr(X > c) and Sp=Pr(Y <c¢). If F(-) and G(-) are the corresponding distribution functions of X and Y, the
sensitivity and specificity can then be written as Se = 1—F(c) and Sp = G(c). Then ROC curve is actually a plot of 1—F(c)
versus 1—-G(c), for —oo < ¢ < oo. At a fixed level g = (1— specificity), the ROC curve can be expressed as 44 = 1-F{G 1(1—-q)},
for 0 <q <1, where G! is the inverse function of G, i.e., G"'(gq) = inf{c : G(c) > q}.

Varieties of approaches regarding estimation of ROC curve have been developed, both parametric and non-parametric.
Over the years, confidence interval for a continuous-scale ROC curve has received much attention because it is more useful
than point estimates and more helpful for researchers to make accurate diagnostic decisions (Su et al., 2009). To avoid the
deficiencies of normal approximation for small or moderate sample sizes, the empirical likelihood (EL) based method is
extensively used to estimate 4. EL is a non-parametric way of inference based on a data-driven likelihood ratio function.
The first use of empirical likelihood ratio function to get confidence intervals appears to be Thomas and Grunkemeier
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(1975). They showed that empirical likelihood ratio confidence intervals for a survival probability based on the y?
distribution have asymptotically correct coverage levels. Later on, the empirical likelihood methods for constructing
confidence regions for the mean parameter of the population were developed systematically by Owen (1988) and Owen
(1990). Comparing to normal approximation method and bootstrap method, EL method can improve the confidence
region, and increase accuracy of the coverage (Hall and La Scala, 1990). Recently, much attention has been paid to
smoothing strategies to overcome the discontinuity issue of the ROC curves. Chen and Hall (1993) first of all introduced
smoothed EL confidence intervals for quantiles on one population. Zou et al. (1997), Lloyd (1998) and Ren et al. (2004)
proposed various smoothed estimators for ROC curves among others. Liang and Zhou (2008) then examined semipara-
metric empirical likelihood confidence intervals for ROC curves with right censoring and established the asymptotic result.
More recently, Yang and Zhao (2012) developed smoothed EL confidence intervals for the ROC curve with right censoring.
The principle of our smoothed empirical likelihood is similar to that of Chen and Hall (1993) and Claeskens et al. (2003) in
the spirit.

Current available methods in analyzing ROC curves are limited to complete data regardless of parametric or non-
parametric settings. The EL method needs modifications when dealing data with missing values. The procedure in our
context is different from that for usual situations. In this paper, we extend the previous studies and concern the situation
that when one model is parametric while the other one is non-parametric, both with missing data in them. As a matter of
fact, this is a very common case in medical research or related fields. For example, when comparing a new treatment with
control treatment, we tend to have more if not enough information about the well developed treatment (i.e., control
treatment), while the new treatment is less known. This leads to a semi-parametric two-sample model, which can reflect
the difference of two samples of missing data. Let X and Y be the responses of two samples, for example, the diseased and
non-diseased subjects, and we assume F(-) and G(-) are the distribution functions of X and Y respectively. Furthermore, we
have the assumption that the population distribution function F is non-parametric while G is parametric, and both X and Y
with missing data in them. In this paper, we are interested in constructing confidence intervals for the ROC curve, or 44
with missing data under this specific context by using empirical likelihood ratio methods. We are interested in
establishing asymptotic distribution of the resulting statistics and derive empirical likelihood-based confidence intervals
for the 44. We also prove that the log likelihood ratio is asymptotically scaled chi-squared distribution.

The organization of this paper is as follows. In Section 2 we introduce the hot deck imputation method first. Then the
smoothed empirical likelihood for the ROC curve is proposed. Also, the semi-empirical likelihood based confidence interval
is constructed and the asymptotic results are established. In Section 3, simulation studies are conducted to evaluate the
finite sample performance of the proposed method. In Section 4 we give a summary and discussion. All proofs are included
in the Appendix.

2. Inference procedure
2.1. Missing data imputation

Throughout the paper, we adopt similar notations as Qin and Zhang (2009). Consider the following random samples
associated with two independent populations (x,0x) and (y,0,):

(*i,0x), i=1,...,m;  (¥;,0), j=1,....n,

where missing indicators

5 0 if x; is missing, _ 0 if y; is missing,
¥=Y1 otherwise, YZ11 otherwise.

We assume missing completely at random (MCAR). Put P(x = 1|x) = Py and P(dy = 1]y) = P,. Like Qin and Zhang (2009),
denote ry = 31" | Oy, Ty = ZJ’-‘: 1 9y;- The respondents with respect to x and y can be written as s, and s,,, respectively.
While the non-respondents are denoted as spx and sp, corresponding to x and y, respectively, where my=m-ry and
my =n-ry. Let x} and yj‘ denote the imputed values for the missing data with respect to x and y, respectively.

Imputation is a commonly used technique to handle missing data which does not strive to determine the best
predictions of individual missing values. Instead, imputation is the substitution of plausible values for missing data so that
inference about the parameters of interest can be made using retained information from the incomplete observations
(Andridge and Little, 2010). As a result, there is a possible gain in efficiency comparing to a complete data analysis, and a
reduction in non-response bias (Little and Rubin, 2002).

For the sample X, which comes from a non-parametric population, we impute the missing values. We adopt here
random hot deck imputation method which is less sensitive to model misspecification and only imputes plausible values
since they are from observed responses. Also, the hot deck estimator is unbiased under MCAR assumption (Little and
Rubin, 2002). For the sample Y, which comes from a parametric population, we first get maximum likelihood estimator
(MLE) of population parameter 0, then select random samples from the population with this estimated parameter. Let §
denote the MLE of 0 from the sample {y;,j € siy}. Then we choose a random sample with size m, from the population G;(-)
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