Partially balanced incomplete block designs with two associate classes ${ }^{2 \pi}$

K.T. Arasu ${ }^{\text {a,* }}$, Pradeep Bansal ${ }^{\text {b,1 }}$, Cody Watson ${ }^{\text {a,2 }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435-0001, USA
${ }^{\mathrm{b}}$ Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

ARTICLE INFO

Article history:

Received 27 September 2011
Received in revised form
9 November 2012
Accepted 9 November 2012
Available online 23 November 2012

Keywords:

Partially balanced block designs
Association scheme
Cyclotomy

Abstract

We provide constructions of cyclic 2-class PBIBD's using cyclotomy in finite fields. Our results give theoretical explanations of the two sporadic examples given by Agrawal (1987).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Following Bose et al. (1954), an incomplete block design is said to be partially balanced with two associate classes if it satisfies the following requirements:

1. The experimental material is divided into b locks of k units each, different treatments being applied to units in the same block.
2. There are $v(>k)$ treatments, each of which occurs in r blocks.
3. A relation of association between any two treatments satisfying the following requirements can be established:
(a) Two treatments are either first associates or second associates.
(b) Each treatment has exactly $n_{i} i$ th associates ($i=1,2$).
(c) Given any two treatments which are i th associates, the number of treatments common to the j th associate of the first and the k th associate of the second is $p_{j k}^{i}$ and is independent of the pair of treatments we start with. Also $p_{j k}^{i}=p_{k j}^{i}(i, j, k=1,2)$.
4. Two treatments which are i th associates occur together in exactly λ_{i} blocks ($i=1,2$).

For a proper partially balanced incomplete block design, we require $\lambda_{1} \neq \lambda_{2}$. If $\lambda_{1}=\lambda_{2}$ or if one of the n_{i} vanishes, the design becomes a balanced incomplete block design (BIBD).

[^0]The numbers $v, r, k, b, n_{1}, n_{2}, \lambda_{1}$, and λ_{2} are called parameters of the first kind, whereas the numbers $p_{j k}^{i}(i, j, k=1,2)$ are called parameters of the second kind.

Let Z_{v} denote the ring of integers modulo v. A two-class cyclic association scheme is defined, see John et al. (1972), Nandi and Adhikary (1966), and Raghavarao (1971), by taking treatments as the distinct elements of Z_{ν}, and the first associates of $i \in Z_{v}$ by adding i to the numbers $d_{1}, d_{2}, \ldots, d_{n_{1}}$ modulo v, where $d_{1}, d_{2}, \ldots, d_{n_{1}}$ satisfy the following:

1. $d_{i} \in Z_{v}$ and $\forall i \neq j \in Z, d_{i} \neq d_{j}$.
2. The multiset of differences, $M=\left(d_{i}-d_{j} \mid i \neq j \in\left\{1, \ldots, n_{1}\right\}\right)$, where each $d_{i} \in\left\{d_{1}, d_{2}, \ldots, d_{n_{1}}\right\}$ occurs p_{11}^{1} times and everything else occurs p_{11}^{2} times. Treatments are either first associates or second associates. Designs resulting in λ_{1} and λ_{2} differing by 1 are called nearly balanced designs.

Two-class cyclic PBIBD's with the following parameters were obtained by Agrawal (1987):
Parameter set 1: $v=17, r=10, k=5, b=34, n_{1}=n_{2}=8, \lambda_{1}=3, \lambda_{2}=2, p_{11}^{1}=3, p_{11}^{2}=4$.
Parameter set 2: $v=37, r=10, k=10, b=37, n_{1}=n_{2}=18, \lambda_{1}=3, \lambda_{2}=2, p_{11}^{1}=8, p_{11}^{2}=9$.
No theoretical explanation was provided in Agrawal (1987) for the aforementioned two examples. In this paper, we provide a few theorems using cyclotomy in finite fields, which produce infinite families of cyclic 2-class PBIBD's. The examples given by Agrawal (1987) are shown to be special cases of our theorems.

2. Preliminaries

If R is a commutative ring with unity and G is a group, we let $R G$ denote the group ring of G over R. When G is multiplicative, each subset $S \subseteq G$ is identified with the group ring element

$$
S=\sum_{s \in S} s
$$

For $A=\sum_{g \in G} a_{g} g$ and $t \in Z$ we define

$$
A^{(t)}=\sum_{g \in G} a_{g} g^{t} .
$$

When G is additive, each subset $S \subseteq G$ is identified with the group ring element

$$
S=\sum_{s \in S} x^{s} .
$$

For $A=\sum_{g \in G} a_{g} x^{g}$ and $t \in Z$ we define

$$
A^{(t)}=\sum_{g \in G} a_{g} c^{t g} .
$$

If G is a group and S is a subset of G of cardinality s, it can be easily seen that in the group ring $Z G, S G=s G$. For $m \in Z$ and the identity 1_{G} of G, we will denote the group ring element $m 1_{G}$ simply by m.

Let q be a prime power. Let $G F(q)$ denote the finite field with q elements. Let ω be a generating element of $G F(q)^{*}$, the multiplicative group of all the non-zero elements of $G F(q)$. Let $q=e f+1$ for $e>0, f \neq 1$. Then the cyclotomic classes of order e are defined by

$$
C_{i}:=\left\{\omega^{e s+i}: s=0, \ldots, f-1\right\} \quad \text { for } i=0, \ldots, e-1 .
$$

The cyclotomic numbers of order e are defined by

$$
(i, j)_{e}:=\left|\left\{(x, y): x \in C_{i}, y \in C_{j}, x+1=y\right\}\right| .
$$

It is easy to see that

1. If $q \equiv 5(\bmod 8)$:
(a) $C_{0}^{(-1)}=C_{2}$,
(b) $C_{2}^{(-1)}=C_{0}$,
(c) $C_{3}^{(-1)}=C_{1}$,
(d) $C_{1}^{(-1)}=C_{3}$.
2. If $q \not \equiv 5(\bmod 8)($ hence $q \equiv 1(\bmod 8))$:
(a) $C_{0}^{(-1)}=C_{0}$,
(b) $C_{2}^{(-1)}=C_{2}$,
(c) $C_{3}^{(-1)}=C_{3}$,
(d) $C_{1}^{(-1)}=C_{1}$.

https://daneshyari.com/en/article/10524911

Download Persian Version:
https://daneshyari.com/article/10524911

Daneshyari.com

[^0]: ${ }^{4}$ Research partially supported by Grants from AFOSR and NSF.

 * Corresponding author. Tel.: +1 9377753828; fax: +1 9377752081.

 E-mail address: k.arasu@wright.edu (K.T. Arasu).
 ${ }^{1}$ Bansal's research was carried out while he was a summer intern at Wright State University (WSU). He thanks the Department of Mathematics and Statistics at WSU for the hospitality and the support provided.
 ${ }^{2}$ Research supported by an REU Grant from NSF.

