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a b s t r a c t

To assess the classification accuracy of a continuous diagnostic result, the receiver

operating characteristic (ROC) curve is commonly used in applications. The partial area

under the ROC curve (pAUC) is one of the widely accepted summary measures due to its

generality and ease of probability interpretation. In the field of life science, a direct

extension of the pAUC into the time-to-event setting can be used to measure the

usefulness of a biomarker for disease detection over time. Without using a trapezoidal

rule, we propose nonparametric estimators, which are easily computed and have

closed-form expressions, for the time-dependent pAUC. The asymptotic Gaussian

processes of the estimators are established and the estimated variance–covariance

functions are provided, which are essential in the construction of confidence intervals.

The finite sample performance of the proposed inference procedures are investigated

through a series of simulations. Our method is further applied to evaluate the

classification ability of CD4 cell counts on patient’s survival time in the AIDS Clinical

Trials Group (ACTG) 175 study. In addition, the inferences can be generalized to

compare the time-dependent pAUCs between patients received the prior antiretroviral

therapy and those without it.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Decision-making is an important issue in many fields such as signal detection, psychology, radiology, and medicine. For
example, preoperative diagnostic tests are medically necessary and implemented in clinical preventive medicine to
determine those patients for whom surgery is beneficial. For the sake of cost-saving or performance improvement, new
diagnostic tests are often introduced and the classification accuracies of them are evaluated and compared with the
existing ones. The ROC curve, a plot of the true positive rate (TPR) versus the false positive rate (FPR) for each possible cut
point, has been widely used for this purpose when the considered diagnostic tests are continuous. One advantage of the
ROC curve is that it describes the inherent classification capability of a biomarker without specifying a specific threshold.
Moreover, the invariance characteristic of ROC curve in measurement scale provides a suitable base to compare different
biomarkers. Generally, the more the curve moves toward the point (0,1), the better a biomarker performs.

In many applications, the area under the ROC curve (AUC), one of the most popular summary measures of the ROC curve, is
used to evaluate the classification ability of a biomarker. It has the probability meaning that the considered biomarker of a
randomly selected diseased case is greater than that of a non-diseased one. Generally, a perfect biomarker will have the AUC
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of one while a poor one takes a value close to 0.5. Since the AUC is the whole area under the ROC curve, relevant information
might not be entirely captured in some cases. For example, two crossed ROC curves can have the same AUC but totally
different performance. Furthermore, there might be limited or no data in the region of high FPR. In view of these drawbacks, it
is more useful to see the pAUC within a certain range of TPR or FPR. To evaluate the performance of several biomarkers,
McClish (1989) adopted the summary measure pAUC for the FPR over a practically relevant interval. On the other hand, Jiang
et al. (1996) showed that women with false-negative findings at mammography cannot be benefited from timely treatment of
the cancer. Thus, these authors suggested using the pAUC with a portion of the true positive range in their applied data.
Although their perspectives are different, the main frame is the same: only the practically acceptable area under the ROC
curve is assessed. As mentioned by Dwyer (1996), the pAUC is a regional analysis of the ROC curve intermediate between the
AUC and individual points on the ROC curve. The pAUC becomes a good measure of classification accuracy because it is easier
for a practitioner to determine a range of TPR or/and FPR that are relevant. Several estimation and inference procedures
have been proposed by Emir et al. (2000), Zhang et al. (2002), Dodd and Pepe (2003), among others. A more thorough
understanding of the ROC, AUC, and pAUC can be also found in Zhou et al. (2002).

Recent research in ROC methodology has extended the binary disease status to the time-dependent setting. Let T denote
the time to a specific disease or death and Y represent the continuous diagnostic marker measured before or onset of the study
with joint survivor function Sðt,yÞ ¼ PðT4t,Y4yÞ. For each fixed time point t, the disease status can be defined as a case if
Trt and a control otherwise. To evaluate the ability of Y in classifying subjects who is diseased before time t or not, Heagerty
et al. (2000) generalized the traditional TPR and FPR to the time-dependent TPR and FPR as T tðyÞ ¼ PðY4yjTrtÞ and
F tðyÞ ¼ PðY4yjT4tÞ, which can be further derived to be ðSð0,yÞ�Sðt,yÞÞ=ð1�ST ðtÞÞ and Sðt,yÞ=ST ðtÞ with ST ðtÞ ¼ Sðt,�1Þ. For
the time-dependent AUC, Chambless and Diao (2006), Chiang et al. (2009), and Chiang and Hung (2010) proposed different
nonparametric estimators and developed the corresponding inference procedures. As for the time-dependent pAUC, there is
still too little research on this topic so far. We propose nonparametric estimators, which are shown to converge weakly to
Gaussian processes, and the estimators for the corresponding variance–covariance functions. The established properties
facilitate us to make inference on the time-dependent pAUC and can be reasonably applied to the time-dependent AUC
because it is a special case of this summary measure.

The rest of this paper is organized as follows. In Section 2, the nonparametric estimation and inference procedures are
proposed for the time-dependent pAUC. The finite sample properties of the estimators and the performance of the
constructed confidence bands are studied through Monte Carlo simulations in Section 3. Section 4 presents an application
of our method to the ACTG 175 study. In this section, an extended inference procedure is further provided for the
comparison of the time-dependent pAUCs. Some conclusions and future works are addressed in Section 5. Finally, the
proof of main results is followed in the Appendix.

2. Estimation and inferences

In this section, we estimate the time-dependent pAUC and develop the corresponding inference procedures. Without
loss of generality, the time-dependent pAUC is discussed for restricted F tðyÞ because that the time-dependent pAUC for
restricted T tðyÞ can be derived in the same way by reversing the roles of case and control subjects.

2.1. Estimation

Let X be the minimum of T and censoring time C, d¼ IðX ¼ TÞ represent the censoring status, and qat ¼F�1
t ðaÞ ¼

inffy : F tðyÞrag, a 2 ð0,1�, denote the ð1�aÞth quantile of Y conditioning on fT4tg at the fixed time point t. Following the
expression f�

R
T tðyÞ dyF tðyÞg for the time-dependent AUC, the time-dependent pAUC ytðqatÞ with the FPRt(y) less than a is

derived to be functional of Sðt,yÞ:

YaðSÞ ¼
�
R
ðSð0,uÞ�Sðt,uÞÞIðuZqatÞduSðt,uÞ

ST ðtÞð1�ST ðtÞÞ
for t 2 ð0,t� with PðX4tÞ40: ð2:1Þ

Note that the value of ytðqatÞ for a perfect biomarker should be a while a useless one is 0:5a2. Same with the interpretation of
Cai and Dodd (2008), the rescaled time-dependent pAUC ytðqatÞ=a can be explained as the probability that the test result of a
case fTirtg is higher than that of a control fTj4tg with its value exceeding qat for iaj, i.e., PðYi4YjjTirt,Tj4t,Yj4qatÞ.

From the formulation in (2.1), an estimator of ytðqatÞ can be obtained if Sðt,yÞ is estimable. Under marker-dependent
censoring (T and C are independent conditioning on Y), Akritas (1994) suggested estimating Sðt,yÞ by bSðt,yÞ ¼ n�1Pn

i ¼ 1
bST ðtjYiÞIðYi4yÞ, where

bST ðtjyÞ ¼
Y

fi:Xi r t,di ¼ 1g

1�
Klð
bSY ðYiÞ�

bSY ðyÞÞ

nbSXðXijyÞ

( )
ð2:2Þ

is an estimator of ST ðtjyÞ ¼ PðT4tjY ¼ yÞwith bSY ðyÞ ¼ n�1
Pn

j ¼ 1 IðYj4yÞ and bSXðtjyÞ ¼ n�1
Pn

j ¼ 1 IðXjZtÞKlð
bSY ðYjÞ�

bSY ðyÞÞ being
estimators of SY ðyÞ ¼ PðY4yÞ and SXðtjyÞ ¼ PðX4tjY ¼ yÞ. Here, KlðuÞ ¼ ð2lÞ�1IðjujolÞ and l is a nonnegative smoothing
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