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Abstract

We show that all 3164 possible OD(48; s1,52,53) exist. In addition to the use of some classical
techniques we employ two new methods of construction.
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1. Introduction

An orthogonal design A, of order n, and type (s1,52,...,s,), denoted OD(n; 51,52, ...,
s,) on the commuting variables +x,£x,,...,4x, is a square matrix of order n with
entries +x; or 0, where each x; occurs s; times in each row and column such that the
distinct rows are pairwise orthogonal. In other words

AAT = (sle 4+ sux,f)l,,,

where 7, is the identity matrix. It is known that the maximum number of variables
in an orthogonal design is p(n), the Radon number, where for n = 2%, b odd, set
a=4c+d, 0 <d <4, then p(n)=8c +24.
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If A and B are orthogonal designs of the same order » and of types (s1,52,...,5,)
and (t1,t,...,4,), respectively, and if ABT = A4"B then 4 and B are called amicable
orthogonal designs, denoted AOD(n; (s1,52,-..,8,); (t1,t2,...,t,)). If in addition, C is
an orthogonal design of order n and type (pi, p2,..., pw), if AxC=Bx*C =0, where
* denotes the Hadamard product, and if 4 4+ C and B+ C are orthogonal designs, then
A, B, C is called a product design of order n and types (s1,82,...,8,), (t1,02,--.,1,),
(P1, p2s-- -5 pw), denoted PD(1; (51,52, -+ Su3 115 825+ 5 Lo P1s P25+ 5 Pu))-

It is conjectured that all possible 3-tuples are types of an orthogonal design of order
8n. This conjecture has been verified for n=1,2,3,4. In this paper we will show that
the conjecture also holds for n = 6. The case n =5 does not seem to be as tractable.
In addition to the use of some classical techniques we employ two new methods of
construction.

Section 2 is devoted to classical results. By classical results we mean all orthogonal
designs obtained more than 25 years ago. Out of 3164 possible cases 3147 are con-
structed using classical results. To show the evolution of the subject area, we keep the
new results out of this section. By new results we mean results obtained in the past 4
years.

2. Classical results

For this part we make extensive use of the book of Geramita and Seberry (1979).
For convenience we quote a number of construction methods from this book.

Theorem 1 (Equating and Killing Theorem). If A is an orthogonal design OD(n; sy,

$2,.-.,8,) on the commuting variables +xy,+x,,...,+x,, then there is an orthogonal
design OD(n;81,82,...,8;+Sj,...,8,) and OD(n;51,52,...,85/-1,8j+1,-..,8,) on the u—1
commuting variables fxi,%xs,...,%x;_1, £xj41,..., EXy.

Theorem 2 (Multiplication Theorem). If there exists an orthogonal design OD(n; s,
$2,...,8,), then there exists an orthogonal design OD(2n; s1,51,¢€s2,...,es,), where e=1
or 2.

Theorem 3 (Second Multiplication Theorem). If there exists an orthogonal design
OD(n;s1,82,...,8,), then there exists an orthogonal design OD(2n; e;s1,€382,...,e,5),
where e;=1o0r 2,i=1,...,u.

Theorem 4. We use the following designs in order 24 (Table 1) and the Multiplication

Theorems above, to obtain the designs given in the appendix which have 9, 8, and 7
variables in order 48.

Theorem 5. An OD(6;a,b) and an AOD(S8;(aj,ay,...,as);(b1,bas,..., b)) give an
OD(48; aay,aan,...,aas, bby,bb,, ..., bb,).

Table 2 gives the designs in order 48 constructed using Theorem 5.
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