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a b s t r a c t

Suppose we observe Yjn = µjn + σjnej for 1 ≤ j ≤ n in R, where {ej} are independent and
identical random errors with common distribution function F(x). Let Mn = max1≤j≤n Yjn.
When the upper tail of F is of power-type, local power type, gamma type and normal type,
we give conditions on the growth of the location and scale trends {µjn, σjn} such that for
certain constants an and bn > 0, bnMn − an converges to one of the three standard extreme
value distributions. In each case bn is proportional to the Lp-norm of {σjn} and does not
depend on {µjn}. Most importantly, trend in scale is shown to dominate trend in location.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and summary

We characterize the asymptotic behavior of the maximum of a random sample subject to trends in both location and
scale. In each case considered the limit is one of the three classical extreme value (EV) distributions obtained by Fisher and
Tippett (1927) for the case of no trends. Suppose we observe Yjn = µjn + σjnej for 1 ≤ j ≤ n in R = (−∞,∞), where
{ej} are independent and identical random errors with common distribution function F(x) on R, and {µjn, σjn} are constants
giving the trends in location and scale. Suchmodels are useful, for example, for long term temperature series, where both the
mean annual temperature and the variability are changing. We shall show that the trend in scale is muchmore important in
determining the behavior of the sample maximum, Mn = max1≤j≤n Yjn, than the trend in location. For the most important
types of upper tail behavior for F(x), and a wide class of {µjn, σjn}, we shall give explicit standardizing constants an and
bn > 0 such that

M ′

n = bnMn − an
L
→ Y (1.1)

as n → ∞, where Y has one of the three EV distributions:
G0(x) = P (Y0 < x) = exp {− exp(−x)} on R, (Gumbel), (1.2)

Gθ (x) = P (Yθ < x) = exp

−x−θ


on (0,∞), (Fréchet), (1.3)

Gθ (x) = P

Y θ < x


= exp


−(−x)θ


on (−∞, 0), (Weibull). (1.4)

∗ Corresponding author. Tel.: +44 01614732941.
E-mail address:mbbsssn2@manchester.ac.uk (S. Nadarajah).

0167-7152/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.spl.2013.06.001

http://dx.doi.org/10.1016/j.spl.2013.06.001
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.spl.2013.06.001&domain=pdf
mailto:mbbsssn2@manchester.ac.uk
http://dx.doi.org/10.1016/j.spl.2013.06.001


2144 C.S. Withers, S. Nadarajah / Statistics and Probability Letters 83 (2013) 2143–2151

These are also known as the EV1, EV2 and EV3 distributions. Note that θ > 0 in (1.3) and (1.4). In each case b−1
n is a function

of scale alone and can be taken as a multiple of

∥σn∥p =


n−1

n
j=1

σ
p
jn

1/p

or ∥σn∥∞ = max
1≤j≤n

σjn, (1.5)

where p = ∞ for EV1, p = θ for EV2, and p = −θ for EV3. In Section 2, we show convergence to EV2 for a power tail:

1 − F(x) = Kx−θ
{1 + o(1)} (1.6)

as x → ∞, where θ > 0 with an = 0. In Section 3, we show convergence to EV3 for a local power tail:

1 − F(x) = K(−x)θ {1 + o(1)} (1.7)

as x ↑ 0, where θ > 0 with an = 0. In Section 4, we show convergence to EV1 for a gamma tail:

1 − F(x) = Kx−θ exp(−x) {1 + o(1)} (1.8)

as x → ∞, and for a normal tail:

1 − F(x) = Kx−θ exp

−x2


{1 + o(1)} (1.9)

as x → ∞. The results for a gamma tail are more complex: they depend on how σjn behaves when near its maximum. We
need to distinguish between the ‘‘continuous’’ case when σjn may be arbitrarily close to

σ∞n = max
1≤j≤n

σjn (1.10)

for sufficiently large n and the ‘‘discontinuous’’ case when λn = σ∞n/max1≤j≤n{σjn : σjn < σ∞n} is bounded away from
one. When studying the continuous case we shall assume that

µjn = µ(j/n), σjn = σ(j/n) (1.11)

for some functionsµ(t), σ(t) on [0, 1]. We then need to consider the behavior of σ(t) in a neighborhood of {t0}maximizing
σ(t). Of the many possibilities we confine ourselves to the following:

(i) σ(t) is constant;
(ii) σ(t) has a unique maximum at t0, where 0 < t0 < 1 and σ (1)(t0) = 0 > σ (2)(t0), where σ (i)(t) is the ith derivative of

σ(t);
(iii) σ(t) has a unique maximum at t0 = 0 or 1, and σ (1)(t0) ≠ 0.

For a normal tail there are yet more possibilities in the continuous case (1.11) if {t0} includes an interval, t1 ≤ t0 ≤ t2, say
(for example, if σ(t) ≡ 1): we then need to consider howµ(t) behaves near {t∗0 } maximizingµ(t) in [t1, t2]; for brevity we
confine ourselves to the following: (ii) and (iii) above,

(iv) σ(t) ≡ 1, µ(t) has a unique maximum at t∗0 , where 0 < t∗0 < 1 and µ(1)(t∗0 ) = 0 > µ(2)(t∗0 );
(v) σ(t) ≡ 1, µ(t) has a unique maximum at t∗0 = 0 or 1, and µ(1)(t∗0 ) ≠ 0.

For more general cases, where {t0} or {t∗0 } is a finite set or when say in (ii), σ (i)(t0) = 0 for i < 2m and σ (2m)(t0) < 0, one
may adapt these results by applying the saddlepoint results of Withers and Nadarajah (2013b).

Returning to the discontinuous case, we shall assume that for some λ > 1 not depending on n

σ∞n/ max
1≤j≤n


σjn : σjn < σ∞n


> λ

for σ∞n of (1.10). Examples of this type include σjn ≡ σj periodic and {σjn ≡ σj, where σj/σj−1 > λ for j ≥ 1}. The behavior
ofMn then depends on pn = #{j : 1 ≤ j ≤ n, σjn = σ∞n}, the number of maximizers σjn has. We shall require that pn → ∞

sufficiently fast. There is a tradeoff between how fast {µjn} may grow and how slowly the number of maximizers pn may
grow: the weakest conditions on {µjn}, max1≤j≤n |µjn| = O(log n), occur when pn/n → 1; see Theorem 4.2. This confirms a
conjecture in Withers (1995) for the case when σjn ≡ σj is periodic, and so provides a connection to results of Ballerini and
McCormick (1989) who considered this case. Our results for power and gamma tails extend those given for the continuous
case in Withers (1995). Extensions to expansions may be obtained in principle by assuming an expansion for the upper tail
of F , as done in Withers and Nadarajah (2013a,c) for power and gamma tails with σjn ≡ 1, µjn = µ(j/n). In particular by
replacing o(1) in the tail expressions (1.6)–(1.9) above by a magnitude like O(x−β), we shall obtain an explicit δn such that
M ′

n − Y = Op(δn) in the sense that

P

M ′

n ≤ x

− P (Y ≤ x) = O (δn) (1.12)

for all x.
These results can be extended to multivariate observations. They should also be extendable to correlated residuals

{ej, 1 ≤ j ≤ n} and to random processes in continuous time Y (t) = µ(t) + σ(t)e(t), 0 ≤ t ≤ T , where e(t) is say a
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