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1. Introduction

This paper defines a new stochastic process, which we call tempered fractional Brownian motion (TFBM), defined by
exponentially tempering the power law kernel in the moving average representation of a fractional Brownian motion
(FBM). The stationary increments of TFBM are called tempered fractional Gaussian noise (TFGN). When FGN is long range
dependent, the corresponding TFGN exhibits semi-long range dependence: Its autocovariance function closely resembles
that of FGN on an intermediate scale, but eventually falls off more rapidly. The spectral density of TFGN resembles a negative
power law for low frequencies, but remains bounded at very low frequencies.

2. Moving average representation

Let {B(t)};cr be a real-valued Brownian motion on the real line, a process with stationary independent increments
such that B(t) has a Gaussian distribution with mean zero and variance o2|t| for all t € R, for some o > 0. Define
an independently scattered Gaussian random measure B(dx) with control measure m(dx) = o2dx by setting B[a, b] =
B(b) —B(a) for any real numbers a < b, and then extending to all Borel sets. Then the stochastic integrals I (f) = f f(x)B(dx)
are defined for all functions f : R — R such that ff(x)zdx < 00, as Gaussian random variables with mean zero and
covariance E[I(f)I(g)] = o2 f f(x)g(x)dx, see for example Chapter 3 in Samorodnitsky and Taqqu (1994).

Definition 2.1. Given an independently scattered Gaussian random measure B(dx) on R with control measure o 2dx, for any
o< % and A > 0, the stochastic integral
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+00
By (t) = / [e77E04(t — )% — eV (—x) ;%] B(dx) (2.1)

o0
where (x);, = xI(x > 0), and 0° = 0, will be called a tempered fractional Brownian motion (TFBM).

It is easy to check that the function
Bape(X) = €T (E —x) L — e () (2.2)

is square integrable over the entire real line for any o < % so that TFBM is well-defined. When —1/2 < @ < 1/2,FBMis a
special case of TFBM with A = 0. Note also that

Za et (CX) = € o cn,c (%) (2.3)

forall t, x € R and all c > 0. The next results shows that TFBM has a nice scaling property, involving both the time scale
and the tempering. Here the symbol £ indicates equality of finite dimensional distributions.

Proposition 2.2. TFBM (2.1) is a Gaussian stochastic process with stationary increments, such that
{B‘)")‘(Ct)}tER £ {CHBa,cA(t)}[E]R (24)

for any scale factor ¢ > 0, where the Hurst indexH = 1/2 — .

Proof. Since B(dx) has control measure m(dx) = o2dx, the random measure B(c dx) has control measure c¢'/?c-2dx. Given
t; <t < --- < t;, achange of variable x = cx’ then yields

</gaqx,cq(x)B(dx) i=1,..., n)
L </ C_uga,cx.r,»(X,)CVZB(CIX/) i=1,..., n)

so that (2.4) holds withH = 1/2 —«. Forany s, t € R, the integrand (2.2) satisfies gy j s+: (S +X) — 84.1.5(S +X) = 84.1.c (X),
and hence a change of variable x = s 4+ X" in the moving average representation yields

(Balct) :i=1,...,n)

(Bur(s+1t) —Byu(s):i=1,...,n) 2 </ga,x,f,.(x’)3(dx/) =1, n)
which shows that TFBM has stationary increments. [

Proposition 2.3. TFBM (2.1) has the covariance function

0_2
CoV [By (1), By 1 (5)] = -

foranys,t € R, where H = 1/2 — «. Here

[ e + 2 Is* — g 1t — 5] (2.5)

2rH) 2r(H+13) 1
= - 2 Ky (M), 2.6
£ @Al N (26)
for t # 0, where K, (z) is the modified Bessel function of the second kind, and Cg =0.

Proof. Use the moving average representation (2.1) with & = 1 to define

+00
C[Z — E[Ba,Mt\(l)z] — / [ef)»t(lfx)Jr(] _X):La _ efkt(fx)Jr(_x):La]Z dx

—00
+oo +00
— /. e—2kt(1—x)+ (] _ X)_T_Z‘xdx + /. e—2kt(—x)+ (_x);Z(de
—0Q —0Q
+o0
-2 / e MU+ (1 — x) e MV (—x) [ “dx. (2.7)
—0Q

Apply the definition of the gamma function, along with a standard integral formula from p. 344 in Gradshteyn and Ryzhik
(2000), to see that (2.6) holds. Since TFBM has stationary increments, it follows from (2.4) that E[B, 5 (£)%] = |t|*" C? for all
t real. Recall the elementary formula ab = 1[a® + b* — (a — b)?], set a = B**(t) and b = B**(s), take expectations, and
use the stationary increments property again, to see that (2.5) holds. O

Remark 2.4. The integral representation (2.1) is causal, i.e., By, (t) depends only on the values of B(s) for s < t. For
applications to spatial statistics, consider
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