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a b s t r a c t

Tempered fractional Brownianmotion (TFBM)modifies the power lawkernel in themoving
average representation of a fractional Brownianmotion, adding an exponential tempering.
Tempered fractional Gaussian noise (TFGN), the increments of TFBM, forma stationary time
series that can exhibit semi-long range dependence. This paper develops the basic theory
of TFBM, including moving average and spectral representations, sample path properties,
and an application to modeling wind speed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper defines a new stochastic process, which we call tempered fractional Brownian motion (TFBM), defined by
exponentially tempering the power law kernel in the moving average representation of a fractional Brownian motion
(FBM). The stationary increments of TFBM are called tempered fractional Gaussian noise (TFGN). When FGN is long range
dependent, the corresponding TFGN exhibits semi-long range dependence: Its autocovariance function closely resembles
that of FGN on an intermediate scale, but eventually falls off more rapidly. The spectral density of TFGN resembles a negative
power law for low frequencies, but remains bounded at very low frequencies.

2. Moving average representation

Let {B(t)}t∈R be a real-valued Brownian motion on the real line, a process with stationary independent increments
such that B(t) has a Gaussian distribution with mean zero and variance σ 2

|t| for all t ∈ R, for some σ > 0. Define
an independently scattered Gaussian random measure B(dx) with control measure m(dx) = σ 2dx by setting B[a, b] =

B(b)−B(a) for any real numbers a < b, and then extending to all Borel sets. Then the stochastic integrals I(f ) :=

f (x)B(dx)

are defined for all functions f : R → R such that

f (x)2dx < ∞, as Gaussian random variables with mean zero and

covariance E[I(f )I(g)] = σ 2

f (x)g(x)dx, see for example Chapter 3 in Samorodnitsky and Taqqu (1994).

Definition 2.1. Given an independently scattered Gaussian randommeasure B(dx) on R with control measure σ 2dx, for any
α < 1

2 and λ ≥ 0, the stochastic integral
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Bα,λ(t) :=


+∞

−∞


e−λ(t−x)+(t − x)−α

+
− e−λ(−x)+(−x)−α

+


B(dx) (2.1)

where (x)+ = xI(x > 0), and 00
= 0, will be called a tempered fractional Brownian motion (TFBM).

It is easy to check that the function

gα,λ,t(x) := e−λ(t−x)+(t − x)−α
+

− e−λ(−x)+(−x)−α
+

(2.2)

is square integrable over the entire real line for any α < 1
2 , so that TFBM is well-defined. When −1/2 < α < 1/2, FBM is a

special case of TFBM with λ = 0. Note also that

gα,λ,ct(cx) = c−αgα,cλ,t(x) (2.3)

for all t, x ∈ R and all c > 0. The next results shows that TFBM has a nice scaling property, involving both the time scale
and the tempering. Here the symbol , indicates equality of finite dimensional distributions.

Proposition 2.2. TFBM (2.1) is a Gaussian stochastic process with stationary increments, such that
Bα,λ(ct)


t∈R ,


cHBα,cλ(t)


t∈R (2.4)

for any scale factor c > 0, where the Hurst index H = 1/2 − α.

Proof. Since B(dx) has control measure m(dx) = σ 2dx, the random measure B(c dx) has control measure c1/2σ 2dx. Given
t1 < t2 < · · · < tn, a change of variable x = cx′ then yields

Bα,λ(cti) : i = 1, . . . , n


=


gα,λ,cti(x)B(dx) : i = 1, . . . , n


d
=


c−αgα,cλ,ti(x

′)c1/2B(dx′) : i = 1, . . . , n


so that (2.4) holds with H = 1/2− α. For any s, t ∈ R, the integrand (2.2) satisfies gα,λ,s+t(s+ x) − gα,λ,s(s+ x) = gα,λ,t(x),
and hence a change of variable x = s + x′ in the moving average representation yields

Bα,λ(s + ti) − Bα,λ(s) : i = 1, . . . , n


,


gα,λ,ti(x

′)B(dx′) : i = 1, . . . , n


which shows that TFBM has stationary increments. �

Proposition 2.3. TFBM (2.1) has the covariance function

Cov

Bα,λ(t), Bα,λ(s)


=

σ 2

2


C2
t |t|2H + C2

s |s|2H − C2
t−s |t − s|2H


(2.5)

for any s, t ∈ R, where H = 1/2 − α. Here

C2
t =

2Γ (2H)

(2λ|t|)2H
−

2Γ

H +

1
2


√

π

1
(2λ|t|)H

KH(λ|t|), (2.6)

for t ≠ 0, where Kν(z) is the modified Bessel function of the second kind, and C2
0 = 0.

Proof. Use the moving average representation (2.1) with σ = 1 to define

C2
t := E[Bα,λ|t|(1)2] =


+∞

−∞


e−λt(1−x)+(1 − x)−α

+
− e−λt(−x)+(−x)−α

+

2
dx

=


+∞

−∞

e−2λt(1−x)+(1 − x)−2α
+

dx +


+∞

−∞

e−2λt(−x)+(−x)−2α
+

dx

− 2


+∞

−∞

e−λt(1−x)+(1 − x)−α
+

e−λt(−x)+(−x)−α
+

dx. (2.7)

Apply the definition of the gamma function, along with a standard integral formula from p. 344 in Gradshteyn and Ryzhik
(2000), to see that (2.6) holds. Since TFBM has stationary increments, it follows from (2.4) that E[Bα,λ(t)2] = |t|2HC2

t for all
t real. Recall the elementary formula ab =

1
2 [a

2
+ b2 − (a − b)2], set a = Bα,λ(t) and b = Bα,λ(s), take expectations, and

use the stationary increments property again, to see that (2.5) holds. �

Remark 2.4. The integral representation (2.1) is causal, i.e., Bα,λ(t) depends only on the values of B(s) for s ≤ t . For
applications to spatial statistics, consider
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