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a b s t r a c t

In this paper, we propose shrinkage estimation for partially linear single-index models. A
profile least squares approximation is used to estimate the model parameters and select
informative variables simultaneously. The resulting estimator is shown to be consistent
and to enjoy the oracle properties.
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1. Introduction

Partially linear single-index models (PLSIMs) combine naturally the advantages of classical linear models and those of
nonparametric regression models. Due to its flexibility and generality, this class of models has gained much attention since
its introduction by Carroll et al. (1997). Let Y be the response variable, and let Z and X be two covariate vectors of length p
and q, respectively. Following Xia and Härdle (2006), we formulate a PLSIM as

Y = η(αTZ) + βTX + ϵ, (1)

where ϵ is the error term such that E(ϵ | Z,X) = 0 and Var(ϵ | Z,X) < ∞ almost surely, α = (α1, . . . , αp)
T and β =

(β1, . . . , βq)
T are parameter vectors, and η(·) is an unknown smooth function. For identifiability, it is assumed that ∥α∥ = 1

and that the first entry of α is positive. The use of the single-index αTZ is to circumvent the ‘‘curse of dimensionality’’ in
multivariate nonparametric regression analysis.

For PLSIMs, several estimation approaches have been proposed in the literature in addition to the backfitting algorithm
of Carroll et al. (1997). For example, Yu and Ruppert (2002) proposed a penalized spline procedure, Xia and Härdle (2006)
studied the minimum average variance estimation (MAVE) method, Wang et al. (2010) proposed a two-stage procedure
under the extra condition that X can be explained by a subset of indices based on Z, and Liang et al. (2010) employed a
profile least squares (PrLS) approach.

In practice, a parsimonious model that retains only significant covariates is more desirable. The lasso technique, initially
developed by Tibshirani (1996) for linear regression models, selects the significant variables and estimates the regression
coefficients simultaneously. Employing an L1-type penalty function on the regression coefficients to shrink their estimates, it
can produce the correct model asymptotically when the model is sparse, a property called consistency in variable selection.
Recently, Zou (2006) proposed an adaptive lasso procedure, in which insignificant variables are penalized heavily whereas
significant variables are penalized relatively slightly, and showed that the adaptive procedure further enjoys the oracle
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properties. That is, the resulting estimator attains the full efficiency of the estimator obtained as if the true model were
known in advance. This backs the popularity of lasso-type methods due to their excellent empirical performance.

In this paper,we apply the adaptive lasso to PLSIMs. A shrinkage procedure based on a profile least squares approximation
(PrLSA) is proposed to simultaneously estimate the model parameters and select informative variables in both parametric
and nonparametric components. Since the procedure essentially solves a convex optimization problem, it is computationally
more attractive while being as efficient as the aforementioned methods. On the other hand, we show that the resulting
estimator is consistent in both parameter estimation and variable selection, and also that it enjoys the oracle properties.
Asymptotically, the zero regression coefficients are estimated to be zero almost surely, and the estimator of nonzero
regression coefficients is normal and performs as if the true model were known. Therefore, the proposed procedure is a
valuable supplement to existing methods.

The remainder of the paper is organized as follows. Section 2 develops the implementation algorithm of the PrLSA
procedure and its penalized version. The asymptotic properties of the resulting estimator are also presented, with technical
proofs given in the Appendix. In Section 3, simulation studies are conducted to evaluate the finite-sample performance of
the procedure.

2. Profile least squares based shrinkage estimation

2.1. Method and algorithm

Let {(Yi, Zi,Xi), i = 1, . . . , n} be an independent and identically distributed (i.i.d.) random sample from the model (1)
with true parameter values (α0, β0) and link functionη0(·), namely Yi = η0(α

T
0Zi)+βT

0Xi+ϵi. This is a typical semiparametric
setting as η0(·) is modeled nonparametrically.

We propose a PrLSA procedure to estimate (α, β) and η(·). First of all, at each data point (z, x), one can estimate η(αT z)
using local linear regression (Fan and Gijbels, 1996) by minimizing

n
i=1


Yi − βTXi − a − b(αT (Zi − z))

2
Kh(α

T (Zi − z))

with respect to (a, b), where Kh(·) = K(·/h)/h, with K(·) being a symmetric kernel function and h being the bandwidth. A
closed-form solution can be obtained as

â
b̂


=


n

i=1

Kh(α
T (Zi − z))ZiZ

T
i

−1  n
i=1

(Yi − βTXi)Kh(α
T (Zi − z))Zi


, (2)

where Zi = (1, αT (Zi − z))T . η(αT z) is estimated by â = η̂(αT z; α, β), a function of (α, β). Moreover, partial derivatives of
η̂(αT z; α, β) with respect to α and β are readily derived; they are also functions of (α, β).

Now, to estimate (α, β), we formulate an ordinary least squares (OLS)-type objective function rather than minimizing

Q (α, β) =

n
j=1


Yj − βTXj − η̂(αTZj; α, β)

2
. (3)

To be specific, a local linear approximation of η̂(αTZj; α, β) around an initial value (α̃, β̃) yields

η̂(αTZj; α, β) ≈ η̂(α̃TZj; α̃, β̃) +
∂η̂

∂(αT , βT )


(α̃,β̃)


α − α̃

β − β̃


,

where
∂η̂

∂(αT , βT )


(α̃,β̃)

:=


∂η̂(αTZj; α, β)

∂αT
,
∂η̂(αTZj; α, β)

∂βT


(α̃,β̃)

.

Then, Q (α, β) can be approximated by

QL(α, β) =

n
j=1


Yj − βTXj − η̂(α̃TZj; α̃, β̃) −

∂η̂

∂(αT , βT )


(α̃,β̃)


α − α̃

β − β̃

2

.

Letting

Y ∗

j = Yj − η̂(α̃TZj; α̃, β̃) +
∂η̂

∂(αT , βT )


(α̃,β̃)


α̃

β̃


,

we have

QL(α, β) =

n
j=1


Y ∗

j −


∂η̂

∂(αT , βT )


(α̃,β̃)

+ (01×p,XT
j )


α
β

2

. (4)

Minimizing (4) with respect to (α, β), we obtain an exact OLS closed-form solution.
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