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a b s t r a c t

Let θ > 0. We consider a one-dimensional fractional Ornstein–Uhlenbeck process defined
as dXt = −θ Xtdt+dBt , t ≥ 0, where B is a fractional Brownianmotion of Hurst parameter
H ∈ ( 12 , 1). We are interested in the problem of estimating the unknown parameter θ .
For that purpose, we dispose of a discretized trajectory, observed at n equidistant times
ti = i∆n, i = 0, . . . , n, and Tn = n∆n denotes the length of the ‘observation window’. We
assume that ∆n → 0 and Tn → ∞ as n → ∞. As an estimator of θ we choose the least
squares estimator (LSE)θn. The consistency of this estimator is established. Explicit bounds
for the Kolmogorov distance, in the case when H ∈ ( 12 ,

3
4 ), in the central limit theorem for

the LSEθn are obtained. These results hold without any kind of ergodicity on the process X .
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider a fractional Ornstein–Uhlenbeck process X = (Xt , t ≥ 0). That is, it solves the linear stochastic
differential equation

X0 = x0; dXt = −θ Xtdt + dBt , t ≥ 0, (1)
where x0 ∈ R, B = (Bt , t ≥ 0) is a fractional Brownian motion with Hurst parameter H ∈ ( 12 , 1) and θ > 0 is an unknown
parameter.

Assume that the process X is observed equidistantly in time with the step size∆n: ti = i∆n, i = 0, . . . , n, and Tn = n∆n
denotes the length of the ‘observation window’. The purpose of this paper is to study the least squares estimator (LSE)θn of
θ based on the sampling data Xti , i = 0, . . . , n.

The LSEθn is obtained as follows:θn minimizes

θ →

n
i=1

Xti − Xti−1 + θXti−1∆n
2 ,

where ti = i∆n, i = 0, . . . , n. Thusθn is given by

θn = −

n
i=1

Xti−1(Xti − Xti−1)

∆n

n
i=1

X2
ti−1

. (2)
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Also, by using (1), we arrive to the following formula:

θn − θ = −

n
i=1

Xti−1Ui

∆n

n
i=1

X2
ti−1

(3)

where

Ui = θ

 ti

ti−1

(Xti−1 − Xs)ds + Bti − Bti−1 , i = 1, . . . , n.

The parametric estimation problems for fractional diffusion processes based on continuous-time observations have been
studied e.g. in Kleptsyna and Le Breton (2002), Tudor and Viens (2007), Prakasa Rao (2005, 2010) via maximum likelihood
method. Recently, the parametric estimation of continuously observed fractional Ornstein–Uhlenbeck process given in (1)
is studied by using the least squares estimator (LSE) defined by

θT = −

 T
0 XtδXt T
0 X2

t dt
.

In the case θ > 0, Hu and Nualart (2010) proved that the LSEθT of θ is strongly consistent and asymptotically normal. In
addition, they also proved that the following estimator

θ T =


1

HΓ (H)T

 T

0
X2
t dt
−

1
2H

is strongly consistent and asymptotically normal. In the case θ < 0, Belfadli et al. (2011) established that the LSEθT of θ is
strongly consistent and asymptotically Cauchy.

From a practical point of view, in parametric inference, it is more realistic and interesting to consider asymptotic
estimation for fractional diffusion processes based on discrete observations.
There exists a rich literature on the parameter estimation problem for diffusion processes driven by Brownianmotions based
on discrete observations, see Prakasa Rao (1988) and Prakasa Rao (2010) for more details about this point. For the fractional
Ornstein–Uhlenbeck process (1), Hu and Song (2013), motivated by the estimator θ T , proved that the following estimator

θ(n) =


1

nHΓ (H)

n
i=1

X2
ti

−
1
2H

is strongly consistent and a Berry–Esséen type theorem for θ(n) is obtained. In this paper, we focus our discussion on the
LSE case.

In general, the study of the asymptotic distribution of any estimator is not very useful for practical purposes unless
the rate of convergence of its distribution is known. The rate of convergence of the distribution of LSE for some diffusion
processes driven by Brownian motions based on discrete time data was studied e.g. in Mishra and Prakasa Rao (2007). To
the best of our knowledge there is no study of this problem for the distribution of the LSE of the unknown drift parameter
in Eq. (1). Our goal in the present paper is to investigate the consistency and the rate of convergence to normality of the LSEθn defined in (2).

Recall that, if Y , Z are two real-valued random variables, then the Kolmogorov distance between the law of Y and the law
of Z is given by

dKol(Y , Z) = sup
−∞<z<∞

|P(Y ≤ z)− P(Z ≤ z)|.

Let us now describe the results we prove in this work. In Theorem 3.3 we show that the consistency ofθn as ∆n → 0
and n∆n → ∞ holds true if H ∈ ( 12 , 1). When H ∈ ( 12 ,

3
4 ) we use the Malliavin calculus, the so-called Stein’s method

on Wiener chaos introduced by Nourdin and Peccati (2007) and the technical Lemmas 3.4 and 3.5 proved respectively by
Michael and Pfanzagl (1971) and Babu et al. (1978), to derive Berry–Esséen-type bounds in the Kolmogorov distance for the
LSEθn (Theorems 3.6 and 3.7).

We proceed as follows. In Section 2 we give the basic tools of Malliavin calculus for the fractional Brownian motion
needed throughout the paper. Section 3 contains our main results, concerning the consistency and the rate of convergence
ofθn.
2. Preliminaries

In this section we describe some basic facts on the stochastic calculus with respect to a fractional Brownian motion. For
more complete presentation on the subject, see Nualart (2006) and Alòs and Nualart (2003).
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