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a b s t r a c t

We carry out the idea of inequality constrained least squares (ICLS) estimation of Liew
(1976) to the inequality constrained ridge regression (ICRR) estimation. We propose ICRR
estimator by reducing the primal–dual relation to the fundamental problem of Dantzig–
Cottle (1967,1974) with Lemke (1962) algorithm. Furthermore, we conduct a Monte Carlo
experiment.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

An inequality constrained model is

y = Xβ + ε (1)
Aβ ≥ c (2)

where y is an n × 1 vector of observations on the dependent variable; X has a full column rank of n × p nonstochastic
explanatory variables matrix; β is a p × 1 vector of unknown parameters; A is an m × p fixed matrix; c is a vector of m
components. ε is an n × 1 vector of disturbances with expectation E(ε) = 0 and dispersion matrix Var(ε) = σ 2I .

The primal–dual relation of Dorn (1960) and Mangasarian (1962) is as follows:

min z = f (β); subject to Aβ ≥ c, β unrestricted (3)

and

maxQ = f (β0) − β ′

0 ▽ f (β0) + λ′c; subject to A′λ = ▽f (β0), λ ≥ 0. (4)

To introduce the least squares estimator with inequality restrictions on parameters, Liew (1976) followed Dorn (1960)
and Mangasarian (1962) to introduce the primal–dual relation as:
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primal

min z
β

=
1
2

(y − Xβ)′ (y − Xβ) (5)

subject to

Aβ ≥ c (or Aβ − v = c), β unrestricted (6)

where v is a nonnegativem component surplus vector,
dual

maxQ
λ

=
1
2


y′y − β ′X ′Xβ


+ c ′λ (7)

subject to

A′λ + X ′y = (X ′X)β, λ ≥ 0 (8)

where λ is an m component dual vector and β is a solution to the primal problem. A solution can be obtained by reducing
the primal–dual relation to the fundamental problem of Dantzig–Cottle (1967,1974) and calculating with Lemke (1962) or
Dantzig–Cottle (1967,1974) algorithms as:

v = Wλ + q (9)

subject to

v′λ = 0, v ≥ 0 and λ ≥ 0 (10)

where

W = A

X ′X

−1 A′, q = Aβ̂ − c and β̂ =

X ′X

−1 X ′y. (11)

A sufficient condition of the solution requires the matrix X ′X to be positive definite and λ∗, v∗ are nonnegative
complementary solutions of the problem. By replacing λ∗ in Eq. (8), Liew (1976) obtained the ICLS estimator, β∗, as:

β∗
=


X ′X

−1 X ′y +

X ′X

−1 A′λ∗. (12)

If the parameters of the model are not restricted, the λ∗ becomes zero and the β∗ becomes equal to the ordinary least
squares (OLS) estimator (β̂). If the parameters are constrained by equalities all the elements of the λ∗ in the complementary
solution become positive which implies v∗

= 0 and

λ∗
= −


A


X ′X

−1 A′

−1 
Aβ̂ − c


. (13)

Thus, the β∗ reduces to the equality constrained least squares estimator as:

β∗
= β̂ +


X ′X

−1 A′


A


X ′X

−1 A′

−1
(c − Aβ̂). (14)

The untruncated variance–covariance matrix of β∗ is defined as

V (β∗) = σ 2M

X ′X

−1 M ′ (15)

where M =

I + X ′X

−1 Ã′

2M2A.

Ã′

1 Ã′

2


is a rearranged columnwise A matrix such that A′λ∗

=

Ã′

1 Ã′

2

 
0
λ0


and

v0

λ0


=


M1
M2


q is an m component vector of the basic variables of

[I1 − W1]

v0

λ0


+ [I2 − W2]


vc

λc


= q (16)

where [I1 − W1] is them bym optimal basis;

vc

λc


and [I2 − W2] are the nonbasic variables and the corresponding nonbasis.

Liew (1976) examined the asymptotic properties of the ICLS estimator for two different cases. In the first case where all
true parameters are unbounded, namely Aβ ≫ c , the existence of a sufficiently large sample n ≥ n0 such that the ICLS
estimator, β∗

n , on such large sample reduces to the OLS estimator, β̂n, is proved by a theorem. In the second case, some
parameters are unbounded while the others are bounded, i.e., A1β ≫ c1 and A2β = c2. If this prior belief is correct, the
existence of a sufficiently large sample n ≥ n0 such that the ICLS estimator, β∗

n , on such a large sample reduces to the
equality constrained least squares estimator is proved in another theorem.
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