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1. Introduction

Let X be the random variable of interest with continuous distribution function (d.f.) F, and C be the right censoring ran-
dom variable with continuous d.f. G. We assume that X and C are independent. In practice, the observed dataset usually
consists of n independent pairs (Y;, §;), i = 1, ..., n,where Y; = X; A GG = min(X;, (;) and §; = I(X; < (). Let L denote the
d.f. of Y. By assumption of independence, we have 1 — L = (1 — F)(1 — G).

A nonparametric maximum likelihood estimator of d.f. F(t) proposed in Kaplan and Meier (1958) is defined as

i \°0
n—i
SN P ELE S
Fa(t) = Vg A =i+ 1 (1.1)
1, ift > Y(n),
where Yqy < Y) < --- < Y, are the ordered statistics of Y1, Y,, ..., Yy, and 6¢1), 82, . . ., 8(n) are the corresponding §;.

The p-quantile (0 < p < 1) of d.f. F is defined as
Q(p) = inf{t : F(t) > p},
which can be estimated by its empirical estimator

£ = F. '(p) = inf{x : F,(x) > p}.
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Lo and Singh (1986), Major and Rejto (1988), Gijbels and Veraverbeke (1988), Beirlant and Einmahl (1990), among many
others, show that the estimators F,(t) and F, 1(p), (0 < p < 1) are strongly consistent and asymptotically normal. However,
the following two facts that

e the d.f. F and Q (p) themselves are absolutely continuous,
e the simple step estimators may experience a substantial lack of efficiency caused by the variability of individual order
statistics,

motivate numerous authors to consider the kernel type Kaplan-Meier estimator and quantile estimator. See, for example,
Reiss (1981), Ghorai and Susarla (1990) and Lemdani and Ould-Said (2001) for distribution function, and Padgett (1986),
Sheather and Marron (1990), Xiang (1995) and Cheng and Peng (2002) for quantile functions. For the same reasons, similar
estimators have been proposed for copulas and ROC curves. The kernel quantile estimator introduced by Parzen (1979) is of
the form:

0.(p) = 1?*‘ k(=P qg 12
Q"(")‘E/o"(“)<hn>”’ (12)

where K () is a kernel function and h,, is a bandwidth.

To compare two different estimating procedures, Hodges and Lehmann (1970) proposed the conception of deficiency. As-
sume a less effective procedure requires k, observations to give equally good performance as a statistical procedure based
on n observations. The ratio e = lim,_, o n/k, and difference d = lim,_, (k, — n) are two natural quantities for this
comparison. Here, e which is known as asymptotic relative efficiency is more popular due to its stability in large samples.
However, when e = 1 as in many important statistical problems, the quantity d may become a useful measure. Hodges
and Lehmann (1970) named d asymptotic deficiency. The deficiencies of the sample quantile estimator with respect to ker-
nel quantile estimator under the criterions of equal MSE and covering probability have been established, for example, by
Falk (1984, 1985), Xiang (1995) and Zhao et al. (2011). To derive a more robust estimator, Lemdani and Ould-Said (2003)
considered the .#;-deficiency of F,(t) with respect to its corresponding smoothed counterpart.

In this paper, we study the .#;-deficiency of the sample quantile estimator with respect to the kernel quantile estimator
for right censored data. This article is organized as follows. Some definitions and assumptions are introduced in Section 2. The
main results are stated in Section 3. Some simulation results and a real data example are reported in Section 4. In Section 5,
we give some concluding remarks. Proofs of the results are deferred to the Appendix.

2. Definitions and assumptions

Forany 0 < p < 1, define the mean absolute error (MAE) of &, as:

MAE (&) = El&mp — Q (D),

whereas, the mean integrated absolute error (MIAE) of &, as:

1
MIAE(Snp) :/ MAE(Snp)dp-
0

Let i(n, p) denote the number of observations needed to achieve the same (or better) performance for &, as the smoothed
counterpart based on n observations, that is,
i(n,p) =min{j =1, 2, ..., MAE(§j) < MAE(an(p))}.
In the same way, let
i(n) =min{j =1, 2, ..., MIAE(§;,) < MIAE(an(p))}.
Ihe quantities i(n, p) — n and i(n) — n are referred to as relative deficiency and relative -#;-deficiency of &,, with respect to

Q. (p), respectively. R
In the following section, we will show that the smoothed estimator Q,(p) is better than sample quantile &, in the sense

of MIAE for some bandwidths. To prove our main results, we make use of the following assumptions.

Al. Q(x) has a bounded (r + 1)-th derivative in a neighborhood of p with 0 < p < F(b;), and Q (p) is the unique solution
of F(x) = p, where by = sup{t : L(t) < 1}.

A2. F(t) has a bounded second derivative on [0, t] where 7 is a constant such that 0 < t < b;.

A3. K(x) is Lipschitz of order 1 and has compact support on [—1, 1].

A4. K(x) is a kernel function of (r + 1)-th order with r > 2. Hence, f_ll K(x)dx = 1, f_ll ¥K(x)dx =0,forj=1,...,r and

f_ll x"t1K (x)dx = c,, where ¢, is a constant.
A5. Asn — o0, the sequence of bandwidths satisfies:

4
nh;

7— — oo and nh)*? — 0.
log” n
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