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a b s t r a c t

We study dependence coefficients for copula-based Markov chains. We provide new tools
to check the convergence rates of mixing coefficients of copula-based Markov chains. We
apply results to the Metropolis–Hastings algorithm. A necessary condition for symmetric
copulas is given and mixtures of copulas are studied.
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1. Introduction

This work is motivated by questions raised after reading Chen et al. (2009) and Beare (2010). Chen et al. (2009) have
shown thatMarkov chains generated by the Clayton, Gumbel or Student copulas are geometrically ergodic. They used in their
paper quantile transformations and small sets to show geometric ergodicity, but could not handle for instance the mixture
of these copulas. In a recent paper, Longla and Peligrad (2012) have shown that these examples are actually exponential
ρ-mixing. We have also answered the open question on geometric ergodicity of convex combinations of geometrically
ergodic reversible Markov chains.

Quantifying the dependence among two or more random variables has been an enduring task for statisticians. Copulas
are full measures of dependence among components of random vectors. Unlike marginal and joint distributions, which
are directly observable, a copula is a hidden dependence structure that couples a joint distribution with its marginals. An
early statistical application of copulas was given by Clayton (1978), where the dependence between two survival times in a
multiple events study is modeled by the so-called Clayton copula

C(x, y) = (x−α
+ y−α

− 1)−1/α, α ≥ 0.

The literature on copulas is growing fast. An excellent overview, guide to the literature and applications, is due to Embrechts
et al. (2003). In later research on copulas, a driving force has been in financial riskmanagement,where they are used tomodel
dependence among different assets in a portfolio. Nelsen’s monograph (2006) can be regarded as one of the best books for
an introduction to copulas.
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1.1. Definitions

1.1.1. 2-copulas
A 2-copula is a function C : [0, 1] × [0, 1] → [0, 1] = I for which C(0, y) = C(x, 0) = 0 (C is grounded), C(1, x) =

C(x, 1) = x ‘‘each coordinate is uniformon I ’’, and for all [x1, x2]×[y1, y2] ⊂ I2, C(x1, y1)+C(x2, y2)−C(x1, y2)−C(x2, y1) ≥

0. The definition does not mention probability, but in fact these conditions imply that C is the joint cumulative distribution
function of two random variables with marginal distributions uniform on I . It follows from the definition (see Chapter 1
in Nelsen, 2006) that the function C is non-decreasing in each of its variables and has partial derivatives almost everywhere
with values between 0 and 1. The partial derivative of C(x, y)with respect to x is a non-decreasing function of y and similarly
with respect to y. A convex combination of 2-copulas is a 2-copula.

If X1, X2 are random variableswith joint distribution F andmarginal distributions F1, F2, then the function C(x, y) defined
by C(F1(x1), F2(x2)) = F(x1, x2) is a copula. Moreover, if the random variables are continuous, then the copula is uniquely
defined by the joint distribution and the marginal distributions by the formula F(F−1

1 (x1), F−1
2 (x2)) = C(x1, x2). This fact is

known as Sklar’s theorem. The implication of the Sklar’s Theorem is that, after standardizing the effects of marginals, the
dependence among components of X = (X1, X2) is fully described by the copula. Indeed, most conventional measures of
dependence can be explicitly expressed in terms of the copula.Wewill use in this paper the following conventional notation:
∥g∥2

2 =

I g

2(x)dx, for i = 1, 2, A,i(x1, x2) =
∂A(x1,x2)

∂xi
, c(x, y) will be used for the density of C(x, y), and R will be used for

the Borel σ -algebra of I .

1.1.2. Copulas and Markov processes
Copulas have been shown to be amore flexible way to define aMarkov process, as in the case when one suspects that the

marginal distributions of the states are not related to the distribution of the initial state. Using copulas will allow changes
in single marginal distributions, without having to change all other distributions in the chain.

A stationary Markov chain (Xn, n ∈ Z) can be defined by a copula (C(x, y)) and a one dimensional marginal distribution.
For stationaryMarkov chainswith uniformmarginals on [0, 1], the transition probabilities for all n ∈ Z are P(Xn ∈ A|Xn−1 =

x) = C,1(x, y) for sets A = (−∞, y] (for more details, see Theorem 3.1 in Darsow et al., 1992). This relationship was used
by Chen et al. (2009) to show that stationary Markov processes defined by the Clayton, Gumbel or Student copulas are
geometrically ergodic.

1.1.3. Dependence coefficients
Many dependence coefficients have been studied in the literature, such as αn, βn, ρn, φn among others. In this paper, we

will mainly use the last 3 coefficients defined as follows.
Given σ -fields A , B:

β(A , B) = E sup
B∈B

|P(B|A ) − P(B)|

ρ(A , B) = sup
f∈L2(A ),g∈L2(B)

corr(f , g),

φ(A , B) = sup
B∈B,A∈A ,P(A)>0

|P(B|A) − P(B)|.

Given the alternative form of the transition probabilities for a Markov chain generated by a copula and a marginal
distribution with strictly positive density, it was shown in Longla and Peligrad (2012) that these coefficients have the
following simple form when the copula for (X0, Xn) is absolutely continuous with density cn, A = σ(Xi, i ≤ 0) and
B = σ(Xi, i ≥ n):

βn =

 1

0
sup
B∈R


B
(cn(x, y) − 1)dy

 dx,
φn = sup

B∈R
ess sup

x


B
(cn(x, y) − 1)dy

 ,
ρn = sup

 1

0

 1

0
cn(x, y)f (x)g(y)dxdy : ∥g∥2 = ∥f ∥2 = 1, E(f ) = E(g) = 0


.

In general the following inequalities hold (for more, see Theorems 7.4 and 7.5 in Bradley, 2007):

βn ≤ φn, ρn ≤ 2


φn, ρn ≤ (ρ1)
n. (1)

These coefficients are defined to assess the dependence structure of the Markov process and provide necessary conditions
for CLT and functional CLT and their rates of convergence. Some examples can be found in Peligrad (1997, 1993) and the
references therein. A stochastic process is said to be α-mixing if αn → 0; β-mixing if βn → 0 or ρ-mixing if ρn → 0.
The process is exponentially mixing if the convergence rate is exponential. A stochastic process is said to be geometrically
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