On an identity in law between Brownian quadratic functionals

Ju-Yi Yen ${ }^{\text {a,* }}$, Marc Yor ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA
${ }^{\text {b }}$ Institut Universitaire de France, Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, France
${ }^{\text {c }}$ Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, Paris, France

ARTICLE INFO

Article history:

Received 17 April 2013
Received in revised form 13 May 2013
Accepted 13 May 2013
Available online 21 May 2013

Keywords:

Brownian quadratic functionals
Distributional integration by parts

Abstract

A stochastic Fubini argument and a computation of some moments are given in relation to a distributional integration by parts formula for Brownian quadratic functionals.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let $\left(B_{t}, t \geq 0\right)$ denote a one-dimensional Brownian motion starting from 0 . Let $0 \leq a \leq b$. Consider also $f, g:[a, b] \rightarrow$ \mathbb{R}_{+}, two continuous functions, with f decreasing, and g increasing (in the large, following the "European convention"). It was shown in Mansuy and Yor (2008) that the following identity in law between quadratic functionals of Brownian motion holds:

$$
\begin{equation*}
\int_{a}^{b}-B_{g(x)}^{2} d f(x)+f(b) B_{g(b)}^{2} \stackrel{(\text { law })}{=} g(a) B_{f(a)}^{2}+\int_{a}^{b} B_{f(x)}^{2} d g(x) \tag{1}
\end{equation*}
$$

To make things simple, we assume that both f and g are C^{1}, and that $f(b)=g(a)=0$. Thus (1) can be written as

$$
\begin{equation*}
\int_{a}^{b}-f^{\prime}(x) B_{g(x)}^{2} d x \stackrel{(\mathrm{law})}{=} \int_{a}^{b} g^{\prime}(x) B_{f(x)}^{2} d x \tag{2}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\int_{a}^{b}-f^{\prime}(x)\left(B_{g(x)}^{2}-g(x)\right) d x \stackrel{(\mathrm{law})}{=} \int_{a}^{b} g^{\prime}(x)\left(B_{f(x)}^{2}-f(x)\right) d x \tag{3}
\end{equation*}
$$

In this paper,

- we prove (2), using a kind of stochastic Fubini argument-see Section 2;
- we prove that the moments of order 2 and 3 of the two sides of (3) are equal, but the complexity of the computations limited us to these orders-see Section 3.
However, we still think that, hidden behind (3), there is a sequence of remarkable integration by parts formulae which would explain the equality of the moments on the two sides of (3).

[^0]
2. A stochastic Fubini argument

To prove (2), we write the Laplace transform

$$
I=E\left[\exp \left(-\frac{\lambda^{2}}{2} \int_{a}^{b} d x\left|f^{\prime}(x)\right| B_{g(x)}^{2}\right)\right]
$$

as the characteristic function

$$
E\left[\exp \left(i \lambda \int_{a}^{b} d C_{x} \sqrt{\left|f^{\prime}(x)\right|} B_{g(x)}\right)\right]
$$

where $\left(C_{x}\right)$ is a second Brownian motion independent of B.
Next, we remark that

$$
B_{g(x)} \stackrel{(\text { law })}{=} \int_{a}^{x} \sqrt{g^{\prime}(y)} d B_{y} \quad \text { (as processes) }
$$

and we use Fubini's argument:

$$
\int_{a}^{b} d C_{x} \sqrt{\left|f^{\prime}(x)\right|} \int_{a}^{x} \sqrt{g^{\prime}(y)} d B_{y}=\int_{a}^{b} \sqrt{g^{\prime}(y)} d B_{y} \int_{y}^{b} d C_{x} \sqrt{\left|f^{\prime}(x)\right|}
$$

We then remark that

$$
\int_{y}^{b} d C_{x} \sqrt{\left|f^{\prime}(x)\right|} \stackrel{(\text { law })}{=} C_{f(y)} \quad \text { (as processes) }
$$

and so

$$
I=E\left[\exp \left(-\frac{\lambda^{2}}{2} \int_{a}^{b} g^{\prime}(y) d y c_{f(y)}^{2}\right)\right] .
$$

Comparing these two expressions for I, we are led to

$$
\int_{a}^{b}\left|f^{\prime}(x)\right| B_{g(x)}^{2} d x \stackrel{(l a w)}{=} \int_{a}^{b} g^{\prime}(y) C_{f(y)}^{2} d y
$$

which is (2), since $B \stackrel{(\text { law })}{=} C$.

3. Moments of order 2 and $\mathbf{3}$ on the two sides of (3)

3.1

We introduce the notation $M_{u}=B_{u}^{2}-u$, and $\bar{\beta}_{n}\left(u_{1}, \ldots, u_{n}\right)=E\left[M_{u_{1}}, \ldots, M_{u_{n}}\right]\left(u_{1}<u_{2}<\cdots<u_{n}\right)$. Let \bar{L}_{n} and \bar{R}_{n} denote the nth moments of the LHS and RHS respectively of (3). It is easily shown that

$$
\begin{align*}
& \bar{L}_{n}=n!\int_{a}^{b}\left|f^{\prime}\left(y_{1}\right)\right| d y_{1} \int_{y_{1}}^{b}\left|f^{\prime}\left(y_{2}\right)\right| d y_{2} \cdots \int_{y_{n-1}}^{b}\left|f^{\prime}\left(y_{n}\right)\right| d y_{n} \bar{\beta}_{n}\left(g\left(y_{1}\right), \ldots, g\left(y_{n}\right)\right) \\
& \bar{R}_{n}=n!\int_{a}^{b} g^{\prime}\left(x_{1}\right) d x_{1} \int_{a}^{x_{1}} g^{\prime}\left(x_{2}\right) d x_{2} \cdots \int_{a}^{x_{n-1}} g^{\prime}\left(x_{n}\right) d x_{n} \bar{\beta}_{n}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) . \tag{4}
\end{align*}
$$

In the following subsections, we shall show the equality of \bar{L}_{n} and \bar{R}_{n} for $n=2$ and $n=3$, with the help of the formulae

$$
\begin{align*}
& \bar{\beta}_{2}\left(u_{1}, u_{2}\right)=2 u_{1}^{2} \tag{5}\\
& \bar{\beta}_{3}\left(u_{1}, u_{2}, u_{3}\right)=8 u_{1}^{2} u_{2}
\end{align*}
$$

which may be obtained from standard stochastic calculus. We have also computed

$$
\bar{\beta}_{4}\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=24 u_{1}^{2} u_{2}^{2}+32 u_{1}^{2} u_{2} u_{3}+4 u_{1}^{2} u_{3}^{2}
$$

but we shall not use this formula.

https://daneshyari.com/en/article/10525832

Download Persian Version:

https://daneshyari.com/article/10525832

Daneshyari.com

[^0]: * Corresponding author. Tel.: +1 6152981759.

 E-mail address: ju-yi.yen@uc.edu (J.-Y. Yen).

