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a b s t r a c t

Iterated filtering is an algorithm for estimating parameters in partially observed Markov
process (POMP) models. The real-world performance of the algorithm depends on several
tuning parameters. We propose a simple method for optimizing the parameter governing
the joint dynamics of the hidden parameter process (called the Σ matrix).

The tuning is implemented using a fixed-lag sequential Monte Carlo expectation–
maximization (EM) algorithm. We introduce two different versions of the tuning parame-
ter, the approximately estimated Σ matrix, and a normalized version of the same matrix.

Our simulations show that the finite-sample performance for the normalized matrix
outperform the standard iterated filter, while the naive version is doing more harm than
good.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Iterated filtering (IF), see Ionides et al. (2006, 2011), is a popular plug-and-playmethod for inference in partially observed
Markov process models; see Bretó et al. (2009); He et al. (2010). Plug-and-play methods require only simulations from the
model, and being able to relate those simulations to measurements. Applications include cholera transmissions, see King
et al. (2008), measles, see He et al. (2010), the role of climate in malaria transmissions, see Laneri et al. (2010), and finance,
see Bhadra (2010). The method is implemented in the open-source R package pomp.1

A number of design parameters must be initialized prior to applying the iterated filtering algorithm to data. Some of
the design parameters were linked in Lindström et al. (2012). This paper studies optimization of the joint dynamics of the
hidden parameters, as expressed by the Σ matrix; see Eq. (1). The asymptotic rate of convergence does not depend on Σ ,
but the practical performance, in terms of covariance of the estimates, often does; cf. Fabian (1978).

The Σ matrix is often chosen as a diagonal matrix; cf. Ionides et al. (2006). This choice is robust, but will not utilize any
dependence structures in themodel.We introduce a simple (essentially free)method for finding a near-optimal value for the
full Σ matrix. It is also possible to recover the near-optimal diagonal matrix within the proposed framework. The matrix is
obtained using a fixed-lag sequential Monte Carlo (SMC) expectation–maximization (EM) method; see Olsson et al. (2008).
Two closely related approximations are derived, with vastly different qualitative properties.

The paper is organized as follows. Section 2 reviews the iterated filtering algorithm, and presents the estimators of theΣ

matrix, Section 3 evaluates these estimators when applying the iterated filtering algorithm to a simple model, and Section 4
concludes.
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2. Methods for partially observed Markov process models

Partially observed Markov processes are a class of processes satisfying the following conditions. Let {Xk} be a hidden
X-valuedMarkov process with initial density fX0(x0; θ) and transition density fXk|Xk−1(xk|xk−1; θ). TheY-valued observation
process {Y } depends on the hidden process at time k through the observation density fYk|Xk(yk|xk, θ), and it is assumed that
Yk|Xk is independent of all other observations. Finally, the model is governed by the parameter vector θ .

Iterated filtering is distantly related to the ‘‘combined state and parameter’’ estimation method that is popular
in engineering, see Ljung (1979), statistics, see Kitagawa (1998), finance, see Lindström et al. (2008), and hydrology,
see Evensen (2009). The idea is to augment the latent {X} process with the parameters with vanishing dynamics. Let κ(·) be
a density with compact support, and let {ζk} be independent draws from κ(·) such that

E [ζk] = 0, Var [ζk] = Σ, ∀ k. (1)

The time-varying parameter dynamics is then given by

Θ0 = θ + τζ0, Θn = Θn−1 + σζn, (2)

where τ and σ are small positive numbers. The joint distribution of the augmented model is given by

gX0:N ,Θ0:N ,Y1:N (x0:n, θ0:N , y1:N; θ, σ , τ , Σ) = fX0:N ,Y1:N (x0:n, y1:N; θ0:N)gΘ0:N (θ0:N; θ, σ , τ , Σ), (3)

where fX0:N ,Y1:N is the joint distribution of {X, Y } conditional on the parameters and gΘ0:N is the distribution of the parameters.
Define the conditional mean and covariance, computedwith respect to the joint distribution, of the parameter process as

θ F
n = Eθ,τ ,σ ,Σ [Θn|Y1:n], (4)

V P
n = Covθ,τ ,σ ,Σ [Θn|Y1:n−1]. (5)

It was shown in Ionides et al. (2011) that the score function can be approximated using these moments.

Theorem 2.1 (Theorem 3 in Ionides et al., 2011). Let K1 be a compact subset of Rp, C1 be a constant, τ be sufficiently small, and
limτ→0 σ(τ)/τ = 0. It then holds that
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These moments are not known for most models, but they can be accurately approximated using SMC (particle filter)
methods. Let θ̃ F

n and Ṽ P
n be the empirical versions of Eqs. (4) and (5) computed using J particles. The score can still be accu-

rately approximated using θ̃ F
n and Ṽ P

n as long as a sufficient number of particles is used; cf. Theorem 4 in Ionides et al. (2011).
The iterated filtering algorithm is a stochastic approximation algorithm, in which the biased and noisy approximation of

the score function is used to iteratively update the estimate of the parameters, eventually arriving at themaximum likelihood
estimate (MLE) (we use iteration indexm; i.e., θ̃ F

n,m is the SMC estimate of θ F
n during iterationm).

Theorem 2.2 (Theorem 5 in Ionides et al., 2011). Let {am}, {τm}, {σm} and {Jm} be positive sequences such that τm → 0,
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m < ∞, and define θ̂m according to
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. (7)

The estimate will then converge to the MLE with probability 1: θm
a.s.
→ θ ⋆.

Ionides et al. (2011) noted that choosing am = m−1, τ 2
m = m−1, σ 2

m = m−(1+δ), and Jm = m(1/2+δ), where δ > 0, satisfies
the conditions in Theorem 2.2.

2.1. Tuning the Σ matrix

Maximum likelihood methods can be used to estimate the Σ parameter, as the joint distribution is known; cf. Eq. (3).
An integral part of the iterated filtering algorithm is applying SMC filters for estimating properties of the latent processes,

including the joint posterior density. However, Olsson et al. (2008) found that the naive approximation of the posterior
distribution degenerates quickly, and argued that a fixed-lag approximation

p(xk|y1:N) ≈ p(xk|y1:min(k+L,N)) (8)

is less variable. They also showed how this approximation can be used to estimate parameters within the EM algorithm. The
resulting algorithm is computationally attractive, but the estimates are often slightly biased; cf. Kantas et al. (2009).
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