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a b s t r a c t

A dimension reduction method for model-based clustering via a finite mixture of shifted
asymmetric Laplace distributions is introduced. The approach is based on existing work
within the Gaussian paradigm and relies on identification of a reduced subspace. This sub-
space contains linear combinations of the original data, ordered by importance using the
associated eigenvalues. This clustering approach is illustrated on simulated and real data,
where it performs favourably compared to its Gaussian analogue.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A dimension reduction method for model-based clustering via shifted asymmetric Laplace (SAL) mixtures is introduced.
This approach is analogous to an existing approach for Gaussian mixtures (Scrucca, 2010), and works by looking for a
subspace that captures most of the clustering structure within the data. This subspace is found based on the variation in
group means and group covariances, and contains linear combinations of the original data ordered by importance through
the associated eigenvalues.

The ‘model-based’ approach to clustering assumes an underlying finite mixture model. A p-dimensional random vector
X is said to arise from a parametric finite mixture distribution if we have f (x|ϑ) =

G
g=1 πg fg(x|θg), where G is the number

of components, πg are mixing proportions, so that
G

g=1 πg = 1 and πg > 0, and ϑ = (π1, . . . , πG, θ1, . . . , θG) is the
parameter vector. Until recently, Gaussian mixtures have dominated the model-based clustering literature. The likelihood
for x1, . . . , xn from a Gaussian mixture model is L(ϑ) =

n
i=1
G

g=1 φ(xi|µg , 6g), where φ(xi|µg , 6g) is the density of a
multivariate Gaussian distribution with mean µg and covariance matrix 6g .

Over the last few years, work on non-Gaussianmodel-based clustering has gainedmomentum. Space does not permit an
exhaustive listing here, but suffice it to say that the quantity ofwork onnon-Gaussianmodel-based clustering is approaching,
or has perhaps recently exceeded, that on its Gaussian precursors. Of particular relevance to work described herein is the
mixture of SAL distributions (Franczak et al., 2012): the density is f (x|ϑ) =

G
g=1 πg ξ(x|αg , 6g , µg), where

ξ(x|αg , 6g , µg) =
2 exp{(x − µg)

⊤6−1
g (x − µg)}

(2π)p/2|6g |
1/2


δ(x, µg |6g)

2 + α⊤
g 6−1

g αg

ν/2

Kν(u) (1)
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is the density of a multivariate SAL distribution, µg is the location, 6g is the scale matrix, and α ∈ Rp denotes the skewness.

Here, δ(x, µg |6g) is the squared Mahalanobis distance between x and µg , u =


(2 + α⊤

g 6−1
g αg)δ(x, µg |6g), and Kν is the

modified Bessel function of the third kind with index ν = (2 − p)/2. Note that although 6g is a covariance matrix, it is not
the covariancematrix of the random variable X with the density in (1), save for the special casewhereα = 0; the covariance
of X is 6̃g := 6g + αα⊤. Further details on the role of 6g in the SAL density are given by Franczak et al. (2012). Parameter
estimation for SAL models is carried out via the expectation–maximization (EM) algorithm (Dempster et al., 1977).

SALmixtures are amongst a fewmethods that show promise for clustering data with asymmetric clusters. Franczak et al.
(2012) give real and simulated data examples showing that SALmixtures can outperformGaussianmixtureswhen applied to
such data; furthermore, they illustrate that the inferior performance of Gaussian mixtures in these cases cannot necessarily
bemitigated bymerging components. This point will be also be illustrated in relation to themethodology introduced herein
(cf. Section 3).

The remainder of the paper is laid out as follows. Our dimension reduction clustering method is presented (Section 2).
In Section 3, we apply our algorithm to simulated and real data sets, and compare the performance of our method to its
Gaussian analogue and several other clustering methods. The paper concludes with discussion and suggestions for future
work (Section 4).

2. Methodology

We introduce a dimension reduction for model-based clustering via SAL mixtures. This is analogous to the Gaussian
mixture modelling and dimension reduction (GMMDR) approach of Scrucca (2010), which uses the MCLUST (Fraley and
Raftery, 1999) family of models. In short, following the sliced inverse regression work of Li (1991, 2000), GMMDR looks for
the smallest subspace that captures the clustering information contained within the data. To do this, we seek those direc-
tions where the cluster means µ̃g := µg + αg and the cluster covariances 6̃g vary the most, provided that each direction is
6-orthogonal to the others. These variations are captured byMI andMII below and we find the subspace via the generalized
eigendecomposition of the kernel matrixM:

Mvi = li6vi, (2)

where l1 ≥ l2 ≥ · · · ≥ ld > 0 and v⊤

i 6vj = 1 if i = j and v⊤

i 6vj = 0 otherwise. Here, M = MI6
−1MI + MII,MI =

G
g=1

πg(µ̃g − µ)(µ̃g − µ)⊤, and MII =
G

g=1 πg(6̃g − 6̄)6−1(6̃g − 6̄)⊤. Note that µ =
G

g=1 πg µ̃g is the global mean, 6 =

(1/n)
n

i=1(xi − µ)(xi − µ)⊤ is the global covariance matrix, and 6̄ =
G

g=1 πg 6̃g is the pooled within-cluster covariance
matrix.

Our approach will use SAL mixtures instead of the Gaussian mixtures used in GMMDR; accordingly, we will refer to it
as SALMMDR. Outline details of the SALMMDR approach follow; it is analogous to the GMMDR approach and the extensive
details given by Scrucca (2010) are not repeated here.

Definition 2.1. The SALMMDR directions are the eigenvectors [v1, . . . , vd] ≡ β, which form the basis of the dimension
reduction subspace S(β) and are ordered based on eigenvalues.

The projections of the mean and covariance onto S(β) are then given by β⊤µ̃g and β⊤6̃gβ, respectively.

Definition 2.2. The SALMMDR variables, Z , are the projections of the n × p data matrix X onto the subspace S(β) and can
be computed as Z = Xβ.

The estimation of the SALMMDR variables is akin to extraction of features, where the components are reduced through
a set of linear combinations of the original variables. As with GMMDR, this set of features may contain estimated SALMMDR
variables that provide no clustering information but require parameter estimation, and thus need to be removed.

Scrucca (2010) employed a modified version of the variable selection method of Raftery and Dean (2006) to filter the
GMMDR features. We use the same approach to select the most appropriate SALMMDR features. This is carried out using
the Bayesian information criterion (BIC; Schwarz, 1978):

BIC = 2l(x, ϑ̂) − r log n,

where l(x, ϑ̂) is the maximized log-likelihood, ϑ̂ is the maximum likelihood estimate of ϑ, r is the estimated number of free
parameters, and n is the number of observations. While alternatives to the BIC exist, it remains the most popular mixture
model selection criterion within the literature.

Thus, we compare two subsets of features, s and s′ = {s \ i} ⊂ s, using

BICdiff(Zi∈s) = BICclust(Zs) − BICnot clust(Zs)
= BICclust(Zs) − [BICclust(Zs′) + BICreg(Zi|Zs′)], (3)

where BICclust(Zs) is the BIC value for the best clustering model fitted using features in s, BICclust(Zs′) is the BIC value for the
best clustering model fitted using features in s′, and BICreg(Zi|Zs′) is the BIC value for the regression of the ith feature on the
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