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a b s t r a c t

Grouping effect of the elastic net asserts that coefficients corresponding to highly corre-
lated predictors in a linear regression setting have small differences. A quantitative esti-
mate for such small differences was given in Zou and Hastie (2005) when the coefficients
have the same sign.We show that the same estimate holds true evenwhen the coefficients
have different signs. The estimate is also improved bymeans of an empirical approximation
error when the model fits the data well.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and main results

Elastic net is a method for variable selection introduced in Zou and Hastie (2005). It can be stated as a coefficient-based
regularization scheme. In a linear regression setting with p predictors x1, . . . , xp ∈ Rn and a response y ∈ Rn, the elastic
net produces a coefficient vectorβ = (β1, . . . ,βp)

T
∈ Rp given by

β = arg min
β∈Rp

y −

x1, . . . , xp


β
2 + λ1|β|1 + λ2|β|

2


, (1.1)

where λ1, λ2 are positive regularization parameters and |β|1 =
p

j=1 |βj|, |β| =
p

j=1 |βj|
2
1/2 are norms on Rp defined

for β = (β1, . . . , βp)
T

∈ Rp.
The classical ordinary least squares estimator takes the form (1.1) with β1 = β2 = 0 while ridge regression (Hoerl and

Kennard, 1988) corresponds to the case β1 = 0. With a motivation of sparse representations, a regularization technique
called Lasso was introduced by Tibshirani (Tibshirani, 1996). It can be expressed as (1.1) with β2 = 0.

While Lasso yields sparse solutions in many cases, it may have limitations in some situations. One situation is when
p > n in which case Lasso chooses at most n variables. The other is when a group of variables are highly correlated in which
case Lasso often chooses only one variable from the group. This may not be desirable in some applications. For example, in
gene sequence analysis of microarray data with thousands of genes (predictors) and n ≪ p, it is quite common that a group
of highly correlated genes responding to the same biological change are equally important to be included in studying the
biological mechanism of the change, which is missed by Lasso. The elastic net has the advantage of including automatically
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all the highly correlated variables in the group. This is called the grouping effect. A rigorous mathematical theorem about the
grouping effect of the elastic net was proved in Zou and Hastie (2005) as follows. Denote xj = (x1j, . . . , xnj)T .

Theorem 1. Assume that the response is centered and the predictors are standardized as

n
i=1

yi = 0,
n

i=1

xij = 0, and
n

i=1

x2ij = 1, for j = 1, . . . , p. (1.2)

If βiβj > 0, (1.3)

then βi − βj


|y|
≤


2(1 − xTi xj)

λ2
. (1.4)

Note that xTi xj is the correlation between xi and xj. It is close to 1 when xi and xj are highly correlated. In this case,
Theorem 1 asserts that the difference between the coefficient paths of predictors i and j is small. Thus (1.5) gives a
quantitative description of the grouping effect of the elastic net.

While assumption (1.2) is not essential, condition (1.3) in Theorem 1 requires that the coefficient paths of predictors i
and j have the same sign. This is a data dependent condition and Theorem 1 does not estimate |βi −βj| when this condition
fails. The first purpose of this paper is to prove that the conclusion of Theorem 1 still holds without condition (1.3).

Theorem 2. Under the assumption (1.2), we have

βi − βj
 ≤


2(1 − xTi xj)|y|

λ2
. (1.5)

The above estimate for the grouping effect depends on the correlation, not on the data fitting. The second purpose of
this paper is to improve the estimate in Theorem 2 when the model fits the data well. We measure the data fitting by the
empirical approximation error defined similarly to approximation error (Smale and Zhou, 2003) as

D(λ1, λ2) = min
β∈Rp

y −

x1, . . . , xp


β
2 + λ1|β|1 + λ2|β|

2


. (1.6)

Sinceβ is a minimizer of (1.6), by taking β = 0, we see thaty −

x1, . . . , xp

β ≤

 D(λ1, λ2) ≤ |y| . (1.7)

Thus a bound becomes tighter when |y|/
√
n =


1
n

n
i=1 y

2
i is replaced by


1
n
D(λ1, λ2), a quantity which might tend to

0 as the sample size increases. We state our bound in a general setting without the standardizing assumption (1.2) under

which

2(1 − xTi xj) = |xi − xj|. Theorem 3, to be proved in Section 2, implies Theorem 2.

Theorem 3. Denote the n × p matrix

x1, . . . , xp


as X. If λ1, λ2 > 0 andβ is the solution to (1.1), then we have

βi − βj
 ≤

xi − xj

·

y − Xβ

λ2
≤

|xi − xj|
 D(λ1, λ2)

λ2
, ∀i, j ∈ {1, . . . , p}. (1.8)

2. Proof of main results

In this section we prove our main results on grouping effect which might be used for discussing other properties such
as sparsity. To this end, we need some explicit formulas for the elastic net which were derived by the Karush–Kuhn–Tucker
Theorem in Yuan and Lin (2007) and for aweighted case inHong and Zhang (2010). For completeness, we give an elementary
proof here. From these formulas we shall see thatβi = 0 if and only if

xTi 
y − Xβ ≤

λ1
2 .

Theorem 4. Let i ∈ {1, . . . , p}. Thenβi ≠ 0 if and only ifxTi 
y − Xβ >

λ1

2
. (2.1)
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