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a b s t r a c t

The characterization of distributions is well known in the field of Statistics and Reliability.
This paper characterizes a few distributions with the help of failure rate, mean residual,
log-odds rate, and aging intensity functions.
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1. Introduction

We mention a few functions to be used in the sequel from the vast literature of reliability theory. These functions char-
acterize the aging phenomenon of any living unit or a system of components.

Suppose that X is a continuous randomvariablewith probability density function (pdf) f (·), cumulative distributive func-
tion (cdf) F(·) and survival function (sf) F̄(·) ≡ 1 − F(·). The failure rate function of X , denoted by r(·), is defined as the
ratio of the pdf to the sf, i.e., r(x) =

f (x)
F̄(x)

, where defined. The mean residual life function, denoted by m(·) of X , is defined

as m(x) = E(X − x | X > x) =


∞

x F̄(u)du
F̄(x)

. The aging intensity function, which analyzes the aging property of a system
quantitatively (cf. Jiang et al., 2003), is defined as

L(x) =
xr(x) x

0 r(u)du
, where defined,

=
−xf (x)

F̄(x) ln F̄(x)
.

The log-odds rate (LOR) of X is defined as

LORX (x) =
d
dx

LOX (x),

=
f (x)

F(x) F̄(x)
(1.1)
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where LOX (·) = ln F(·)

F̄(·)
is the log-odds function. Also, by changing the variable Y = ln(X), the log-odds rate in terms of ln(x)

is obtained as

LORY (y) =
g(y)

G(y) Ḡ(y)
,

=
eyf (ey)

F(ey) F̄(ey)
, (1.2)

where the random variable Y has the pdf and the cdf denoted by g(·) and G(·) respectively. Henceforth, we denote LORX (x)
by LOR(x) and LORY (y) by LOR(y) when there is no ambiguity.

The odds ratio has a large number of applications in different fields viz. reliability, large sample theory, discriminant
analysis and many others. The usefulness of the log-odds rate function in comparing the reliability of two systems is
discussed in Navarro et al. (2008). They have characterized different probability distributions based on the relationships
among conditional moment, failure rate and log-odds rate. It has been used to characterize probability distributions by
Sunoj et al. (2007), where the authors also mention the different usage of the log-odds rate in reliability and repairable
systems. Characterization of distribution by the log-odds rate is also discussed in Wang et al. (2003). They have noted that
the increasing log-odds ratio is less stringent than increasing failure rate, and is therefore potentially of broader applicability.
Brown et al. (2012) have used the log-odds ratio to construct large sample Wilson-type confidence intervals. It has been
numerically demonstrated by Platt (1998) that the asymptotic bias of themaximummodified profile likelihood estimator of
a common odds ratio is negligible for odds ratio less than 5. While estimating discriminant coefficients, Sheena and Gupta
(2004) obtained the estimators in terms of gradient of log-odds. Fisher’s linear discriminant function can be viewed as a
posterior log-odds that a subject belongs to one population versus the other given the data vector, see, for instance, Haff
(1986). He has also shown that the vector of discriminant coefficients is the gradient of the posterior log-odds. Zimmer et al.
(1998) andWang et al. (2003) showed that F has constant LOR in x (resp. ln x) if and only if F has logistic (resp. log–logistic)
distribution with respective cdf given by

F1(x) =
1

1 + exp

−

x−µ

s

 , x ∈ R, µ ∈ R, s > 0,

and

F2(x) =
xα

1 + xα
, x > 0, α > 0.

The characterization of probability distributions arising in reliability theory is done in Kagan et al. (1973), Kotz (1974),
Galambos (1975a,b), Klebanov (1978), Nanda (2010) among others. The characterization of distributions through truncation
is done in Laurent (1974). Looking into the importance of the log-odds ratio, here we characterize a few well-known
statistical distributions through r(·),m(·), L(·) and LOR(·).

2. Main results

In this section, we characterize a few probability distributions viz., exponential, Weibull, logistic and log–logistic
distributions. We start this section by stating one known result from Makino (1984) and Nanda (2010).

Theorem 2.1. For any nonnegative random variable X,

E


1
r(X)


≥

1
E(r(X))

,

and

E


1
m(X)


≥

1
E(m(X))

.

The equality holds if and only if X is exponentially distributed.

This motivates us to prove the following theorem. Before that we give a lemma from Nanda et al. (2007) to be used in
sequel.

Lemma 2.1. For a nonnegative randomvariable X, L(x) = c, for x ≥ 0, c being a constant, if and only if X follows two-parameter
Weibull distribution with shape parameter c. �

Theorem 2.2. For any nonnegative random variable X,

E


1

L(X)


≥

1
E(L(X))

.

The equality holds if and only if X follows two-parameter Weibull family of distributions.
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