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a b s t r a c t

Let {X(t), t ≥ 0} be a continuous mean square differentiable stationary Gaussian process.
Under somemild restrictions on its correlation function r(·), we prove an almost sure limit
theorem for the maximum of the Gaussian process {X(t), t ≥ 0}.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The asymptotic theory of Gaussian processes has experienced new developments in the recent past years. Significant
recent contributions can be found in Adler et al. (in press) and Cheng and Xiao (2013) for smooth or continuous Gaussian
random fields. Exact asymptotic type results derived for extremes of non-smooth Gaussian processes by relying on the
Double Sum Method are given in Arendarczyk and Dȩbicki (2011, 2012), Dȩbicki and Tabiś (2011), Hüsler et al. (2011),
and Tan et al. (2012). Along with the analysis of extremes of continuous maxima, novel results inspired by the seminal
paper Piterbarg (2004) have been derived for the joint asymptotic behaviour of discrete and continuous maxima; see Tan
and Hashorva (2013, submitted for publication). Yet another important direction which deals with extremes of Gaussian
processes followed in this paper concerns the almost sure limit theorem (ASLT).

The ASLT has been first introduced independently by Brosamler (1988) and Schatte (1988) for partial sum, and then the
concept has already started to receive applications in many areas. For example, Bercu (2004) has showed the statistical
applications of ASLT. In its simplest form the ASLT for maxima Mn = maxk≤n Xk of independent random variables Xi, i ≥ 1
states that (see Cheng et al., 1998; Fahrner and Stadtmüller, 1998) under some regularity conditions

lim
N→∞

1
lnN

N
n=1

1
n
I(an(Mn − bn) ≤ x) = G(x) a.s. (1)

for some real sequences an > 0, bn ∈ R, n ≥ 1 and some non-degenerate distribution G. Throughout this paper I(·) stands
for the indicator function.

✩ Research supported by National Science Foundation of China (No. 11071182) and Research Start-up Foundation of Jiaxing University (No. 70512021).
∗ Tel.: +86 13957395469.

E-mail address: tzq728@163.com.

0167-7152/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.spl.2013.05.034

http://dx.doi.org/10.1016/j.spl.2013.05.034
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.spl.2013.05.034&domain=pdf
mailto:tzq728@163.com
http://dx.doi.org/10.1016/j.spl.2013.05.034


2136 Z. Tan / Statistics and Probability Letters 83 (2013) 2135–2141

Csáki and Gonchigdanzan (2002) have extended (1) for weakly dependent stationary Gaussian sequences; see also Tan
and Peng (2009), Peng and Nadarajah (2011), Weng et al. (2012), and Hashorva and Weng (2013). For the stationary and
non-stationary Gaussian random fields, we refer the reader to Choi (2010) and Tan and Wang (in press), respectively.

In this paper, we are interested in similar problems for the maxima of stationary Gaussian processes.
Let {X(t), t ≥ 0} be a continuous mean square differentiable stationary Gaussian process, assumed to have zero mean

and covariance function r(t) = EX(s)X(t + s) satisfying the following condition

r(t) = 1 −
λ

2
|t|2 + o(|t|2) as t → 0, (2)

where λ = −r ′′(0). Note that condition (2) is one of the standard conditions for studying the extremes for Gaussian pro-
cesses; see e.g., Leadbetter et al. (1983) and Piterbarg (2004). Next, set M(T ) = M([0, T ]) = max{X(t), 0 ≤ t ≤ T } and let
Nu(T ) be the number of upcrossings of the level u by {X(t), 0 ≤ t ≤ T }, so that by Rice’s formula (see e.g. Leadbetter et al.,
1983, p. 153)

µ = µ(u) = ENu(1) =
1
2π

λ1/2e−u2/2. (3)

Under suitable conditions on the rate of decay of r(t), e.g. if r(t) log t → 0 as t → ∞ and if u and T tend to infinity in a coor-
dinated way, ENu(T ) = Tµ(u) → τ for some constant τ ≥ 0, then as T → ∞ (c.f. Leadbetter et al., 1983, Chapters 8 and 9)

P(M(T ) ≤ u) → e−τ (4)

and

P(aT (M(T ) − bT ) ≤ u) → exp

−e−x (5)

where the normalizing constants are defined for all large T by

aT =
√
2 ln T , bT = aT + a−1

T ln


λ1/2

2π


. (6)

The above result can be extended to the more general case of nondifferentiable Gaussian processes; see Chapter 12 of Lead-
better et al. (1983) for details. In this note, we concentrate on the ASLT for the maxima of stationary Gaussian processes.
The obtained result is a continuous version of the one obtained by Csáki and Gonchigdanzan (2002) and is of theoretical
importance since it is a stronger version of the ‘‘usual’’ convergence result.

The brief organization of the paper is as follows. In Section 2 we give the main result while in Section 3, we prove the
main result.

2. Main result

In addition to the notation and hypotheses from the Introduction we will assume that

r ′′(t) − r ′′(0) ≤ ct2, t ≥ 0, (7)

for some constant c > 0. This assumption is not a severe one, it is satisfied for instance when r(t) = exp(−t2/2) and
r(t) = 1/(1 + t2/4)2; see Kratz and Rootzén (1997) for details. Next, we state the main result of this contribution.

Theorem 2.1. Let {X(t), t ≥ 0} be a continuous mean square differentiable stationary Gaussian process with correlation
functions r(·) satisfying (2) and (7). Suppose in addition that r(T )(ln T )(ln ln T )3(1+ε)

= O(1) for some ε > 0. Then,
(i) if Tµ(uT ) → τ for 0 < τ < ∞, then

lim
T→∞

1
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1
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X(s) ≤ ut


dt = e−τ a.s., (8)

(ii) if aT , bT are defined as in (6), then

lim
T→∞
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X(s) − bt
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≤ x


dt = exp


−e−x a.s. (9)

Remark 2.1. Assumption (7) is from Kratz and Rootzén (1997). In that paper, the authors dealt with the rate of convergence
of extremes for the mean square differentiable stationary Gaussian processes. To prove the ASLT for extremes of Gaussian
processes, we also need to know a similar type of convergence rate.

Remark 2.2. The above mentioned two examples r(t) = exp(−t2/2) and r(t) = 1/(1 + t2/4)2 also satisfy the conditions
of Theorem 2.1. The first example is the type of squared exponential covariance function and the second example is the type
of rational quadratic covariance function.
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