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Kernel density estimation on Riemannian manifolds
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Abstract

The estimation of the underlying probability density of n i.i.d. random objects on a compact Riemannian
manifold without boundary is considered. The proposed methodology adapts the technique of kernel
density estimation on Euclidean sample spaces to this nonEuclidean setting. Under sufficient regularity
assumptions on the underlying density, L2 convergence rates are obtained.
r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The situation where the sample space is not Euclidean, but has the structure of a differentiable
manifold, may be encountered in numerous fields of science. The case where the sample space is
the circle S1 or the sphere S2 has been extensively studied, and a great deal of concrete examples is
provided by the literature on axial and directional statistics. A survey of statistical methodologies
dealing with this kind of data may be found in Jupp and Mardia (1989), Mardia (1972), Watson
(1983).
In this paper, we discuss the estimation of a probability density on a Riemannian manifold. The

proposed methodology adapts the technique of kernel density estimation on Euclidean sample
spaces to this nonEuclidean setting. The manifold is assumed compact without boundary and, to
the best of our knowledge, kernel density estimation on this large class of manifolds has not been
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studied to date. Density estimation on the circle using trigonometric Fourier series is considered in
Devroye and Gyorfi (1985). The generalization of estimation with Fourier series to the case of a
compact Riemannian manifold without boundary is developed in Hendriks (1990), where the
theory builds upon the eigenfunctions of the Laplace–Beltrami operator on the manifold. Related
work on nonparametric deconvolution density estimation on the sphere S2 may be found in
Healy and Kim (1996), Healy et al. (1998), Hendriks (2003). In Hendriks et al. (1993) and Lee
and Ruymgaart (1996) the authors consider density and curve estimation on compact smooth
submanifolds of a Euclidean space using caps, i.e., intersections of the manifold with closed
balls in the ambient Euclidean space. Kernel methods for nonparametric density estimation
for axial or directional data are studied in Hall et al. (1987), Fischer et al. (1993), where the
kernels proposed by the authors are normalized functions of the scalar product of the evaluation
point x and the observation X i. Classical models for spherical data such as the von Mises
distribution on the circle or rotationally symmetric distribution (Watson, 1983) may be expressed
as functions of a scalar product xtm, for x;m 2 Sd , which is none other than the cosine of the
angle between x and m, showing that they may also be expressed as functions of the geodesic
distance on Sd .
The density estimator discussed in this paper is based on kernels that are functions of the

Riemannian geodesic distance on the manifold, and its expression is consistent with the
expressions of kernel density estimators in the Euclidean case. This estimator has been used
recently for image analysis (Lee et al., 2004). It is shown that the appealing idea of centering a
small ‘‘mountain’’ on the observations, as mentioned in Van der Vaart (1998), is preserved, in the
sense that each observation is an intrinsic mean of its associated kernel, provided that the
bandwidth be small enough. The estimator and its first properties are formulated in Section 2.
Consistency is studied in Section 3. Under sufficient regularity assumptions on the underlying
density, L2 convergence rates are obtained. For materials on differential geometry, we refer to
Boothby (1975), Kobayashi and Nomizu (1969), Chavel (1993), Willmore (1993), Hebey (1997).

2. Definition and first properties

Let ðM; gÞ be a compact Riemannian manifold without boundary of dimension d. We shall
assume that ðM; gÞ is complete, i.e., ðM; dgÞ is a complete metric space, where dg denotes the
Riemannian distance.
Let X be a random object on M, i.e., a measurable map on a probability space ðO;A;PÞ taking

values in ðM;BÞ, whereB denotes the Borel s-field of M. We shall assume that the image measure
of P by X is absolutely continuous with respect to the Riemannian volume measure, admitting an
a.s. continuous density f on M. The Riemannian volume measure will be denoted by vg.
Let X 1; . . . ;X n be i.i.d. random objects on M with density f. Let K : Rþ ! R be a nonnegative

map such that:
(i)

R
Rd KðkxkÞdlðxÞ ¼ 1, (ii)

R
Rd xKðkxkÞdlðxÞ ¼ 0, (iii)

R
Rd kxk2KðkxkÞdlðxÞo1, (iv)

suppK ¼ ½0; 1
, (v) sup KðxÞ ¼ Kð0Þ,

where l denotes the Lebesgue measure of Rd . Hence the map Rd 3 x ! KðkxkÞ 2 R is an isotropic
kernel on Rd supported by the closed unit ball.
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