

Available online at www.sciencedirect.com

Statistics & Probability Letters 71 (2005) 283-294

www.elsevier.com/locate/stapro

Reinforced weak convergence of stochastic processes

Michael Drmota^{a,*}, Jean-François Marckert^b

^aInstitute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstrasse 8–10, A-1040 Vienna, Austria

^bLAMA, Université de Versailles-St. Quentin, Bâtiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles, France

Received 6 June 2002; received in revised form 1 November 2004 Available online 23 December 2004

Abstract

We consider a sequence of stochastic processes X_n on C[0,1] converging weakly to X and call it polynomially convergent, if $\mathbf{E}F(X_n) \to \mathbf{E}F(X)$ for continuous functionals F of polynomial growth. We present a sufficient moment conditions on X_n for polynomial convergence and provide several examples, e.g. discrete excursions and depth first path associated to Galton-Watson trees. This concept leads to a new approach to moments of functionals of rooted trees such as height and path length. © 2004 Elsevier B.V. All rights reserved.

Keywords: Weak convergence; Excursions; Functionals of trees

1. Introduction

Let X_n and X denote stochastic processes on C[0, 1]. Then weak convergence of X_n to X means that for every continuous and bounded functional $F: C[0, 1] \to \mathbb{R}$, we have

$$\mathbf{E}F(X_n) \to \mathbf{E}F(X), \quad (n \to \infty).$$

The topology on C[0, 1] is induced by the norm $\|.\|_{\infty}$. The purpose of this paper is to show that, under natural moments assumptions, this property can be extended to a wider class of functionals which need not be bounded anymore.

E-mail address: michael.drmota@tuwien.ac.at (M. Drmota).

0167-7152/\$-see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.spl.2004.11.005

^{*}Corresponding author.

For this purpose we introduce a notion of reinforced weak convergence.

Definition. Let X_n and X denote continuous stochastic processes on C[0,1]. We say that X_n converges polynomially to X if

$$\mathbf{E}F(X_n) \to \mathbf{E}F(X) \quad (n \to \infty)$$
 (1)

for all continuous functionals $F: C[0,1] \to \mathbf{R}$ satisfying

$$|F(f)| \le C(1 + ||f||_{\infty})^k$$
 (2)

for some constants C, k > 0.

Remark 1. Examples for functionals F satisfying (2) are maximum and integrals. Hence, if X_n is polynomially convergent to X we have, for any r>0 and for any Borel set $I \subset [0,1]$

$$\mathbf{E} \max_{t \in I} |X_n(t)|^r \to \mathbf{E} \max_{t \in I} |X(t)|^r$$

and

$$\mathbf{E} \int_{I} X_{n}(t)^{r} dt \to \mathbf{E} \int_{I} X(t)^{r} dt.$$

Remark 2. Note that polynomial convergence is equivalent to

$$\sup_{n} \mathbf{E}(\|X_n\|_{\infty}^k) < \infty \quad \text{(for all } k > 0\text{)}$$

if X_n converges weakly to X. This follows almost directly from Billingsley (1995, p. 338) (see also Lemmas 1 and 2).

We first state a necessary condition for polynomial convergence.

Theorem 1. Suppose that X_n and X are stochastic processes on C[0,1] such that X_n converges weakly to X. Further assume that the following two conditions are satisfied:

1. There exists $t_0 \in [0, 1]$ such that for all integers $k \ge 0$

$$\sup_{n} \mathbf{E} |X_n(t_0)|^k < \infty. \tag{4}$$

2. There exists a sequence $(\alpha_d)_{d\geqslant 1}$ of positive real numbers with $\alpha_d > 1$ for infinitely many d such that for all integers d > 0

$$\mathbf{E}|X_n(t) - X_n(s)|^d \le C_d |t - s|^{\alpha_d} \quad \text{for all } s, t \in [0, 1]$$
 (5)

for some constant $C_d > 0$.

Then X_n converges polynomially to X.

Remark 3. Note that (4) and (5) imply tightness of X_n by applying Kolmogorov's criterion (see Revuz and Yor, 1999, p. 516). Furthermore, we will show in Section 2 that (4) and (5) imply $\sup_n \mathbf{E}|X_n(t_0)|^k < \infty$ for all fixed $t_0 \in [0,1]$ and integers $k \ge 0$. Consequently it follows from

Download English Version:

https://daneshyari.com/en/article/10526024

Download Persian Version:

https://daneshyari.com/article/10526024

<u>Daneshyari.com</u>