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Abstract

We consider a sequence of stochastic processes X, on C[0,1] converging weakly to X and call it
polynomially convergent, if EF(X,) — EF(X) for continuous functionals F of polynomial growth. We
present a sufficient moment conditions on X, for polynomial convergence and provide several examples,
e.g. discrete excursions and depth first path associated to Galton—Watson trees. This concept leads to a new
approach to moments of functionals of rooted trees such as height and path length.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let X, and X denote stochastic processes on C[0, 1]. Then weak convergence of X,, to X means
that for every continuous and bounded functional F : C[0, 1] — R, we have

EF(X,) - EF(X), (n— o0).

The topology on ([0, 1] is induced by the norm ||.||. The purpose of this paper is to show that,
under natural moments assumptions, this property can be extended to a wider class of functionals
which need not be bounded anymore.
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For this purpose we introduce a notion of reinforced weak convergence.

Definition. Let X, and X denote continuous stochastic processes on C[0,1]. We say that X,
converges polynomially to X if

EF(X,) > EF(X) (n— o0) (1)
for all continuous functionals F : C[0, 1] — R satisfying
IF(NI<CA + I1f 1) 2

for some constants C, k> 0.

Remark 1. Examples for functionals F satisfying (2) are maximum and integrals. Hence, if X, is
polynomially convergent to X we have, for any »>0 and for any Borel set I C [0, 1]

Emax |X,(1)|" — Emax | X(¢)|
tel tel

and

E/ X,(0)" dt — E/ X(1) du.
I I
Remark 2. Note that polynomial convergence is equivalent to

sup E(| X, [I%,)<oo (for all k>0) (3)

n
if X, converges weakly to X. This follows almost directly from Billingsley (1995, p. 338) (see also
Lemmas 1 and 2).
We first state a necessary condition for polynomial convergence.
Theorem 1. Suppose that X, and X are stochastic processes on C[0,1] such that X, converges
weakly to X. Further assume that the following two conditions are satisfied:
1. There exists ty € [0, 1] such that for all integers k=0
sup E|X,(#)|F < oo0. 4)
n

2. There exists a sequence (0q) 1 of positive real numbers with oy > 1 for infinitely many d such that
for all integers d>0

E|X (1) — X,($)|“ < Cylt — 517 for all 5,1 €[0,1] (5)

for some constant C;>0.

Then X, converges polynomially to X.

Remark 3. Note that (4) and (5) imply tightness of X, by applying Kolmogorov’s criterion (see
Revuz and Yor, 1999, p. 516). Furthermore, we will show in Section 2 that (4) and (5) imply
sup, E|X,(t))|* <oo for all fixed #y €[0,1] and integers k>0. Consequently it follows from
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