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Iterated random functions and slowly varying tails
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Abstract

Consider a sequence of i.i.d. random Lipschitz functions {Ψn}n≥0. Using this sequence we can define
a Markov chain via the recursive formula Rn+1 = Ψn+1(Rn). It is a well known fact that under some mild
moment assumptions this Markov chain has a unique stationary distribution. We are interested in the tail
behaviour of this distribution in the case when Ψ0(t) ≈ A0t + B0. We will show that under subexponential
assumptions on the random variable log+(A0 ∨ B0) the tail asymptotic in question can be described using
the integrated tail function of log+(A0 ∨ B0). In particular we will obtain new results for the random
difference equation Rn+1 = An+1 Rn + Bn+1.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a sequence of independent identically distributed (i.i.d.) random Lipschitz functions
{Ψn}n≥0, where Ψn : R → R for n ∈ N. Using this sequence we can define a Markov chain via
the recursive formula

Rn+1 = Ψn+1(Rn) for n ≥ 0, (1.1)

where R0 ∈ R is arbitrary but independent of the sequence {Ψn}n≥0. Put Ψ = Ψ0. We are
interested in the existence and properties of the stationary distribution of the Markov chain
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{Rn}n≥0, that is the solution of the stochastic fixed point equation

R
d
= Ψ(R) R independent of Ψ , (1.2)

where the distribution of random variable R is the stationary distribution of the Markov chain
{Rn}n≥0.

The main example, we have in mind, is the random difference equation, where Ψ is an affine
transformation, that is Ψn(t) = An t + Bn with {(An, Bn)}n≥0 being an i.i.d. sequence of two-
dimensional random vectors. Then the formula (1.1) can be written as

Rn+1 = An+1 Rn + Bn+1 for n ≥ 0. (1.3)

Put (A, B) = (A0, B0). It is a well known fact that if

E[log |A|] < 0 and E[log+
|B|] < ∞,

then the Markov chain {Rn}n≥0 given by (1.3) has a unique stationary distribution which can be
represented as the distribution of the random variable

R =


n≥0

Bn+1

n
k=1

Ak, (1.4)

for details see [28]. Random variables of this form can be found in analysis of probabilistic algo-
rithms or financial mathematics, where R would be called a perpetuity. Such random variables
occur also in number theory, combinatorics, as a solution to stochastic fixed point equation

R
d
= AR + B R independent of (A, B), (1.5)

atomic cascades, random environment branching processes, exponential functionals of Lévy pro-
cesses, Additive Increase Multiplicative Decrease algorithms [17], COGARCH processes [22],
and more. A variety of examples for possible applications of R can be found in [14,15,11].

From the application point of view, the key information is the behaviour of the tail of R, that is

P[R > x] as x → ∞.

This problem was investigated by various authors, for example by Goldie and Grübel [14]
and in a similar setting by Hitczenko and Wesołowski [18]. The first result says that if B is
bounded, P[A ∈ [0, 1]] = 1 and the distribution of A behaves like the uniform distribution in
the neighbourhood of 1, then R given by (1.4) has thin tail, more precisely log P[R ≥ x] ∼

−cx log(x). Recall that for two positive functions f (·) and g(·), by f (x) ∼ g(x) we mean that
limx→∞ f (x)/g(x) = 1. In this paper we are only interested in limits as x → ∞, so from now
we omit the specification of the limit.

There is also the result of Kesten [20] and later on, in the same setting, of Goldie [13]. The
essence of this result is that under Cramér’s condition, that is if E[|A|

α
] = 1 for some α > 0 such

that E[|B|
α
] < ∞, the tail of R is regularly varying, i.e. P[R > x] ∼ cx−α for some positive

and finite constant c and R defined by (1.4).
Finally, the result of Grincevičius [16], which was later generalised by Grey [15], states that

in the case of positive A if for some α > 0 we have E[Aα
] < 1 and P[B > x] ∼ x−α L(x),

where L is slowly varying (that is L(cx) ∼ L(x) for any positive c), then the tail of R is again
regularly varying, in fact P[R > x] ∼ cx−α L(x). Note that in this case the tail of perpetuity R
exhibits the same rate of decay as the tail of the input, that is P[R > x] ∼ cP[B > x].
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