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Abstract

We will investigate a random mass splitting model and the closely related random walk in a random
environment (RWRE). The heat kernel for the RWRE at time t is the mass splitting distribution at t . We
prove a quenched invariance principle (QIP) for the RWRE which gives us a quenched central limit theorem
for the mass splitting model. Our RWRE has an environment which is changing with time. We follow the
outline for proving a QIP for a random walk in a space–time random environment laid out by Rassoul-Agha
and Seppäläinen (2005) which in turn was based on the work of Kipnis and Varadhan (1986) and others.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Imagine a one dimensional city (motivated by Abbott’s Flatland) on the Y -axis with houses at
the points (0, k). Suppose the city is stricken with an epidemic and things are getting worse by the
day. As the death toll rises, each house (0, k) has only a Poisson(1) number of survivors v(0, k)
when the long awaited medical breakthrough suddenly happens. The surviving residents (assume
at least one survives) of house (0, 0) are scientists who were working on a cure for a while and
they finally have an antidote! But the quantity that is produced is limited (say has mass 1 unit).
So, they get out of their house carrying an equal proportion of the medicine (1/v(0, 0)), and
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start performing one-dimensional simple random walks, with time represented along the positive
X -axis and the spatial coordinate along the Y -axis, to share it with the survivors. Meanwhile, the
remaining survivors decide that staying inside the house in unhygienic conditions is dangerous,
and they get out of their respective houses and start performing (one-dimensional) simple random
walks at the same time as the scientists. Whenever a group of people meet on the way, say at
(t, k), and at least one person in the group has some medicine, it gets equally divided among all
the people in the group. This process continues. The question we ask in this article is: How does
the mass distribution of medicine at time t behave for large values of t?

We call this system the Random Mass Splitting model. This model came about as the
natural discrete analogue of the following problem which was suggested to us by Krzysztof
Burdzy [8]: suppose there is an initial configuration of particles distributed according to a Poisson
point process. Each particle performs a Brownian motion when away from its two neighboring
particles, and when two particles meet, they get reflected off each other so that the ordering is
preserved. This is the two-sided version of the Atlas model (see [23]) which frequently appears in
Stochastic Portfolio theory. We give a mass of one to a tagged particle. Every time two particles
collide, the mass splits in half between them (it can be shown that there are no triple collisions by
methods of [23]). A way of understanding the intersection graph of these particles is to monitor
the evolution of this mass in time. We hope that the developments of this paper will shed light on
this problem.

Our model fits in a well-studied class of models where two types of particles interact. These
problems become substantially harder when both types of particles move. In [17–19] Kesten and
Sidoravicius investigated the shape of the infected set when a group of moving particles spread
a contagious disease (or rumor) among another group of healthy (ignorant) particles which also
move. The movement of each particle is assumed to be independent of the other. Another example
from this class is the work of Peres et al. [25] who studied the detection of a moving particle by
a mobile wireless network. Our model is more in the spirit of the former collection of papers.
However instead of looking at a shape theorem for the sites where the antidote has reached, we
are interested in quantifying the spread by looking at the distribution of mass that is initially
carried by a few particles (the ones at the origin).

Our study of the model begins with the following observation. We use the movement of the
villagers over time to define a random environment. Then we study the movement of a random
walker in this random environment (RWRE). We study this RWRE because it turns out that the
heat kernel of the walk conditioned on the environment ω at time t is precisely the distribution
of the medicine at time t when the villagers are moving according to ω. Random walk in random
environment models have been studied by many authors. This can be a very difficult field as even
the simplest properties such as transience and recurrence are difficult to establish [16]. But a
theory of random walk in random environments has been developed. We will harness that theory
to find the asymptotic mass distribution.

In many examples, such as simple random walk on supercritical percolation clusters, we get
a quenched invariance principle (i.e. an almost sure convergence of the RWRE to Brownian
motion) [1,30]. However in other examples we find behaviors that are very different from the
usual diffusive behavior of simple random walk on Zd [31,2]. Many of the proofs of invariance
principles for random walks in random environments have their origins in the seminal work
of Kipnis and Varadhan [20]. This paper laid down the foundation for quenched invariance
principles for reversible Markov chains. Maxwell and Woodroofe [21] and Derriennic and
Lin [9] subsequently extended their approach to the non-reversible set-up. Rassoul-Agha and
Seppäläinen [27] developed further on these techniques to give a set of conditions under
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