
Available online at www.sciencedirect.com

Stochastic Processes and their Applications 123 (2013) 2779–2807
www.elsevier.com/locate/spa
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Abstract

We develop a doubly spectral representation of a stationary functional time series, and study the
properties of its empirical version. The representation decomposes the time series into an integral of
uncorrelated frequency components (Cramér representation), each of which is in turn expanded in a
Karhunen–Loève series. The construction is based on the spectral density operator, the functional analogue
of the spectral density matrix, whose eigenvalues and eigenfunctions at different frequencies provide the
building blocks of the representation. By truncating the representation at a finite level, we obtain a harmonic
principal component analysis of the time series, an optimal finite dimensional reduction of the time series
that captures both the temporal dynamics of the process, as well as the within-curve dynamics. Empirical
versions of the decompositions are introduced, and a rigorous analysis of their large-sample behaviour is
provided, that does not require any prior structural assumptions such as linearity or Gaussianity of the
functional time series, but rather hinges on Brillinger-type mixing conditions involving cumulants.
c⃝ 2013 Elsevier B.V. All rights reserved.
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0. Introduction

Though spectral decompositions can play an important role in the statistical analysis of many
classes of stochastic processes, it may not be an exaggeration to claim that in functional data
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analysis in particular, they are not simply important, but essential. Functional data analysis
consists in drawing inferences pertaining to the law of a continuous time stochastic process
{X (τ ); τ ∈ [0, 1]} with mean function and covariance operator

m(τ ) = E[X (τ )] and R0 := E[(X − m) ⊗ (X − m)],

respectively, on the basis of a collection of T (independent identically distributed) realizations
of this stochastic process, {X t (τ )}T −1

t=0 . The process {X (τ ); τ ∈ [0, 1]} is typically modelled
as a random element of a separable Hilbert space of functions, often that of square integrable
complex functions defined on [0, 1], say L2 ([0, 1], C). As such, it admits a Karhunen–Loève
decomposition, a spectral representation of the form

X (τ ) = m(τ ) +

∞
n=1

ξnϕn(τ ), (1)

where {ϕn}
∞

n=1 are the orthonormal eigenfunctions of the operator R0, and {ξn}
∞

n=1 are the

corresponding uncorrelated Fourier coefficients, ξn =
 1

0 ϕn(τ )[X (τ ) − m(τ )]dτ , with variance
equal to the respective eigenvalue of R0, say λn . Convergence is in mean square, and can in fact
be seen to be uniform over τ , provided X is continuous in mean square. The decomposition is
essentially unique (assuming no multiplicities in the eigenvalues), and characterizes the law of X .

The functional principal component decomposition (1) is fundamental for a number of rea-
sons. First and foremost, it yields a separation of variables: the stochastic part of X , repre-
sented by the countable collection {ξn}, is separated from the functional part, represented by
the deterministic functions {ϕn}. Furthermore, it provides insight into the smoothness proper-
ties of the random function, which are encapsulated in the smoothness of the functions ϕn , each
“relatively contributing” according to the ratio λn/


k≥1 λk . Finally, it allows for an optimal

finite-dimensional approximation of the random function X , a functional Principal Component
Analysis, in that the projection of X onto the space spanned by the first K eigenfunctions {ϕn}

K
n=1

provides the best K -dimensional approximation of X in mean square. As a consequence, the
Karhunen–Loève representation has become both the object of and the means for much of the
statistical methodology developed for functional data. It has defined what today is accepted as
the canonical framework for functional data analysis and has provided a bridge allowing for a
technology transfer of tools from multivariate statistics to problems of functional statistics.

As the name suggests, the Karhunen–Loève expansion can be traced back to the work of
Karhunen [24] and Loève [27], the former in the context of series representations of Wiener
measures and the latter in the context of linear filtering of stochastic processes. From the statisti-
cal perspective, Grenander [16] used the countable representation afforded by the expansion as a
coordinate system to construct inferential procedures for random functions (perhaps marking the
birth of functional data analysis; see also Grenander [17]). Large sample asymptotic properties
of the empirical functional principal components, constructed on the basis of an i.i.d. sample
{X t (τ ); τ ∈ [0, 1]}

T −1
t=0 , were considered by Kleffe [25], who proved their consistency for the

true functional principal components, and Dauxois et al. [13], who determined their asymptotic
distributions. The empirical functional principal components were subsequently put to use to
generalize finite-dimensional methods to the functional case, notably by Besse and Ramsay [2]
and Rice and Silverman [35], leading on the one hand to a surge in methodological work on func-
tional principal components: smooth components (e.g. Silverman [36]), higher order theory (Hall
and Hosseini-Nasab [18,19]), nonparametric and conditional components (e.g. Cardot [10,11])
and components for irregularly sampled functional data (e.g. Yao et al. [38], Hall et al. [20] and
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