

Available online at www.sciencedirect.com

ScienceDirect

stochastic processes and their applications

Stochastic Processes and their Applications 124 (2014) 1-17

www.elsevier.com/locate/spa

Invariance principles for generalized domains of semistable attraction

Wensheng Wang*

Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China

Received 5 October 2012; received in revised form 11 July 2013; accepted 11 July 2013

Available online 19 July 2013

Abstract

Let X, X_1, X_2, \ldots be independent and identically distributed \mathbb{R}^d -valued random vectors and assume X belongs to the generalized domain of attraction of some operator semistable law without normal component. Then without changing its distribution, one can redefine the sequence on a new probability space such that the properly affine normalized partial sums converge in probability and consequently even in L^p (for some p > 0) to the corresponding operator semistable Lévy motion. (©) 2013 Elsevier B.V. All rights reserved.

MSC: 60G50; 60K40; 60F17

Keywords: Operator semistable law; Domain of attraction; Invariance principle; Affine normalized partial sum; Operator Lévy motion

1. Introduction

Let \mathbb{R}^d be the space of d-dimensional real column vectors endowed with the Euclidean norm $\|\cdot\|$. Let X, X_1, X_2, \ldots be independent and identically distributed (i.i.d.) \mathbb{R}^d -valued random vectors and assume that X belongs to the *generalized domain of operator semistable attraction* (abbreviated as GDOSA) of some random vector Y. This means that for some increasing sequence (k(n)) of natural numbers tending to infinity, with $k(n+1)/k(n) \to \bar{c} \geq 1$ as $n \to \infty$, nonrandom shifts $a(n) \in \mathbb{R}^d$ and linear operators A(n), the affine normalized partial sum converges in distribution to Y, i.e.

$$A(n)(X_1 + \dots + X_{k(n)}) + a(n) \Rightarrow Y \quad \text{as } n \to \infty.$$
 (1.1)

E-mail addresses: wswang@aliyun.com, wswang@yahoo.cn.

^{*} Tel.: +86 0571 28865291.

The limit law $\nu = \mathcal{L}(Y)$ is called *operator semistable*. In the excellent paper Jajte [7] introduced and characterized the notion of an operator semistable law in \mathbb{R}^d .

We say that X belongs to the strict GDOSA if (1.1) holds with a(n) = 0. When $k(n) \equiv n$ in (1.1), we say that X belongs to the *generalized domain of operator stable attraction*. Furthermore, if A(n) is a nonrandom real number then we say that X belongs to the *domain of attraction of a stable law*.

We say that Y is full, meaning that the support of the distribution $\mathcal{L}(Y)$ is not contained in any (d-1)-dimensional hyperplane of \mathbb{R}^d . This forces A(n) to be invertible for all large n and hence we can assume without loss of generality that A(n) is invertible for all n. It is well-known (see, e.g., [7,2,12]) that a full probability measure ν is an operator semistable measure if and only if ν is infinitely divisible and there exist a number c>1, a vector $b\in\mathbb{R}^d$ and a linear operator E (an invertible $d\times d$ matrix) such that

$$v^c = c^E v * \delta(b) \tag{1.2}$$

holds. Then ν is called (c^E,c) operator semistable. Here $\mu*\nu$ denotes the convolution of two measures μ and ν, ν^c is the c-fold convolution power of the infinitely divisible law $\nu, c^E = \exp(E\log c)$ where

$$\exp(E) = \sum_{j=0}^{\infty} \frac{E^j}{j!}$$

is the usual exponential operator with the convention $E^0 = I$ the identity $d \times d$ matrix and $\delta(b)$ denotes the point mass in a $b \in \mathbb{R}^d$. We write $X \in \text{GDOSA}(Y,c)$ if (1.2) holds. By Jajte [7], the distribution $v = \mathcal{L}(Y)$ in (1.1) is *operator stable* if $\bar{c} = 1$ and (1.2) holds for all c > 1. This means that operator semistable laws include operator stable laws as special cases. In fact, following the argumentation in [15], the distribution $v = \mathcal{L}(Y)$ is the most general setting in which useful information about the distribution of X can be obtained from the limit relation (1.1). By the theorem in [2], $c \in \{\bar{c}, \bar{c}^2\}$ in (1.2) if $\bar{c} > 1$. We call v stable with index α (0 < α < 2) or multivariable stable, if (1.2) holds for the exponent $E = (1/\alpha)I$.

The limit law $\nu = \mathcal{L}(Y)$ in (1.1) is infinitely divisible and hence representable by the Lévy–Khinchin triple $[a,Q,\phi]$, where $a\in\mathbb{R}^d$, Q(t) is a nonnegative definite quadratic form on \mathbb{R}^d and ϕ is a Lévy measure, that is, the characteristic function of ν is $\exp(\psi(t))$ with

$$\psi(t) = i\langle a, t \rangle - \frac{1}{2}Q(t) + \int_{\mathbb{R}^d \setminus \{0\}} \left(e^{i\langle t, x \rangle} - 1 - \frac{i\langle t, x \rangle}{1 + \|x\|^2} \right) \phi(dx)$$

for all $t \in \mathbb{R}^d$, where $\langle \cdot, \cdot \rangle$ denotes the standard inner product on \mathbb{R}^d . The triple $[a, Q, \phi]$ is unique. It follows from Hudson et al. [6] and Scheffler [19] that if $\phi \neq 0$ then $\mathbb{E}||X||^2 = \infty$ and hence X is heavy tailed unless ν is a purely Gaussian law. For more information on the infinitely divisible distributions one can refer to Sato [18].

The purpose of this paper is to investigate weak and L^p -invariance principles for heavy-tailed random vectors and hence we assume that ν is nonnormal, i.e. Q = 0.

Scheffler [20] investigated the large deviation results and various variants of Chover's laws of the iterated logarithm (LIL) for distributions belonging to the strict GDOSA of a nonnormal operator semistable law. Scheffler and Becker-Kern [24] investigated the LILs for randomly stopped sums of random vectors belonging to the generalized domain of semistable attraction of some nonnormal law. Meerschaert and Scheffler [13] studied the invariance principle in

Download English Version:

https://daneshyari.com/en/article/10527225

Download Persian Version:

https://daneshyari.com/article/10527225

<u>Daneshyari.com</u>