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Abstract

We study the joint limit distribution of the k largest eigenvalues of a p × p sample covariance matrix
X XT based on a large p × n matrix X . The rows of X are given by independent copies of a linear process,
Xi t =


j c j Zi,t− j , with regularly varying noise (Zi t ) with tail index α ∈ (0, 4). It is shown that a

point process based on the eigenvalues of X XT converges, as n → ∞ and p → ∞ at a suitable rate, in
distribution to a Poisson point process with an intensity measure depending on α and


c2

j . This result is
extended to random coefficient models where the coefficients of the linear processes (Xi t ) are given by
c j (θi ), for some ergodic sequence (θi ), and thus vary in each row of X . As a by-product of our techniques
we obtain a proof of the corresponding result for matrices with iid entries in cases where p/n goes to zero
or infinity and α ∈ (0, 2).
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Recently there has been increasing interest in studying large dimensional data sets that arise
in finance, wireless communications, genetics and other fields. Patterns in these data can often be
summarized by the sample covariance matrix, as done in multivariate regression and dimension
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reduction via factor analysis. Therefore, our objective is to study the asymptotic behavior of
the eigenvalues λ(1) ≥ · · · ≥ λ(p) of a p × p sample covariance matrix X XT, where the data
matrix X is obtained from n observations of a high-dimensional stochastic process with values
in Rp. Classical results in this direction often assume that the entries of X are independent and
identically distributed (iid) or satisfy some moment conditions. For example, the Four Moment
Theorem of Tao and Vu [39] shows that the asymptotic behavior of the eigenvalues of X XT is
determined by the first four moments of the distribution of the iid matrix entries of X . Our goal is
to weaken the moment conditions by allowing for heavy-tails, and the assumption of independent
entries by allowing for dependence within the rows and columns. Potential applications arise in
portfolio management in finance, where observations typically have heavy-tails and dependence.

Assuming that the data comes from a multivariate normal distribution, one is able to compute
the joint distribution of the eigenvalues (λ(1), . . . , λ(p)), see [26]. Under the additional assump-
tion that the dimension p is fixed while the sample size n goes to infinity, Anderson [1] obtains
a central limit like theorem for the largest eigenvalue. Clearly, it is not possible to derive the
joint distribution in a general setting where the distribution of X is not invariant with respect to
orthogonal transformations. Furthermore, since in modern applications with large dimensional
data sets, p might be of similar or even larger order than n, it might be more suitable to assume
that both p and n go to infinity, so Anderson’s result may not be a good approximation in this
setting. For example, considering a financial index like the S&P 500, the number of stocks is
p = 500, whereas, if daily returns of the past 5 years are given, n is only around 1300. In ge-
netic studies, the number of investigated genes p might easily exceed the number of participating
individuals n by several orders of magnitude. In this large n, large p framework results differ
dramatically from the corresponding fixed p, large n results—with major consequences for the
statistical analysis of large data sets [27].

Spectral properties of large dimensional random matrices is one of many topics that has
become known under the banner Random Matrix Theory (RMT). The original motivation for
RMT comes from mathematical physics [20,42], where large random matrices serve as a finite-
dimensional approximation of infinite-dimensional operators. Its importance for statistics comes
from the fact that RMT may be used to correct traditional tests or estimators which fail in the
‘large n, large p’ setting. For example, Bai et al. [4] give corrections on some likelihood ratio
tests that fail even for moderate p (around 20), and El Karoui [21] consistently estimates the
spectrum of a large dimensional covariance matrix using RMT. Thus statistical considerations
will be our motivation for a random matrix model with heavy-tailed and dependent entries.

Before describing our results, we will give a brief overview of some of the key results from
RMT for real-valued sample covariance matrices X XT. A more detailed account on RMT can
be found, for instance, in the textbooks [2,5], or [31]. Here X is a real p × n random matrix,
and p and n go to infinity simultaneously. Let us first assume that the entries of X are iid
with variance 1. Results on the global behavior of the eigenvalues of X XT mostly concern the
spectral distribution, that is the random probability measure of its eigenvalues p−1p

i=1 ϵn−1λ(i)
,

where ϵ denotes the Dirac measure. The spectral distribution converges, as n, p → ∞ with
p/n → γ ∈ (0, 1], to a deterministic measure with density function

1
2πxγ


(x+ − x)(x − x−)1(x−,x+)(x), x± := (1 ±

√
γ )2,

where 1 denotes the indicator function. This is the so called Marčenko–Pastur law [30,41]. One
obtains a different result if X XT is perturbed via an affine transformation [30,33]. Partially based
on these results, [6,7,35,43] treat the case where the rows of X are given by independent copies
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