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Abstract

Let Q and P be equivalent probability measures and let ψ be a J -dimensional vector of random
variables such that dQ

dP and ψ are defined in terms of a weak solution X to a d-dimensional stochastic
differential equation. Motivated by the problem of endogenous completeness in financial economics we
present conditions which guarantee that every local martingale under Q is a stochastic integral with respect
to the J -dimensional martingale St , EQ

[ψ |Ft ]. While the drift b = b(t, x) and the volatility σ = σ(t, x)
coefficients for X need to have only minimal regularity properties with respect to x , they are assumed
to be analytic functions with respect to t . We provide a counter-example showing that this t-analyticity
assumption for σ cannot be removed.
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1. Introduction

Let (Ω ,F1,F = (Ft )t∈[0,1],P) be a complete filtered probability space, Q be an equivalent
probability measure, and S = (S j

t ) be a J -dimensional martingale under Q. It is often important
to know whether every local martingale M = (Mt ) under Q admits an integral representation
with respect to S, that is,

Mt = M0 +

 t

0
Hud Su, t ∈ [0, 1], (1.1)

for some predictable S-integrable process H = (H j
t ). For instance, in mathematical finance,

which is the topic of a particular interest to us, the existence of such a martingale representation
corresponds to the completeness of the market model driven by stock prices S, see Harrison and
Pliska [7].

A general answer is given in Jacod [9, Section XI.1(a)]. Jacod’s theorem states that the integral
representation property holds if and only if Q is the unique equivalent martingale measure for S.
In mathematical finance this result is sometimes referred to as the 2nd fundamental theorem of
asset pricing.

In many applications, the process S is defined in a forward form, in terms of its predictable
characteristics under P. The density process Z of a martingale measure Q for S is then
constructed through the use of the Girsanov theorem and its generalizations, see Jacod and
Shiryaev [10]. The verification of the existence of integral representations for all Q-martingales
under S is often straightforward. For example, if S is a diffusion process under P with the drift
vector-process b = (bt ) and the volatility matrix-process σ = (σt ), then such a representation
exists if and only if σ has full rank dP × dt almost surely.

In this paper we assume that both S and Z are described in a backward form, through their
terminal values. Given random variables ξ > 0 and ψ = (ψ j ) j=1,...,J they are defined as

Z1 ,
dQ
dP

,
ξ

E[ξ ]
,

St , EQ
[ψ |Ft ], t ∈ [0, 1].

We are looking for (easily verifiable) conditions on ξ and ψ guaranteeing the integral
representation of all Q-martingales with respect to S.

Our work is motivated by the problem of endogenous completeness in continuous-time
financial economics which naturally arises in the construction of Radner equilibrium, see
Anderson and Raimondo [1], Hugonnier, Malamud, and Trubowitz [8], and Riedel and
Herzberg [18], and in the study of the equilibrium-based price impact models, see Bank and
Kramkov [2] and German [6]. Here ξ is an equilibrium state price density, usually defined
implicitly by a fixed point argument, and ψ = (ψ j ) is the random vector of the cumulative
discounted dividends for traded stocks. The term “endogenous” is used because the stock prices
S are computed as an output of equilibrium. A similar problem also arises in the verification of
the completeness of markets where, in addition to stocks, one can also trade options, see Davis
and Obłój [5].

We focus on the case when ξ and ψ are defined in terms of a weak solution X to a d-
dimensional stochastic differential equation. With respect to x the coefficients of this equation
satisfy the classical conditions guaranteeing weak existence and uniqueness: the drift vector
b(t, ·) is measurable and bounded and the volatility matrix σ(t, ·) is uniformly continuous and
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