



Available online at www.sciencedirect.com



stochastic processes and their applications

Stochastic Processes and their Applications 124 (2014) 883-914

www.elsevier.com/locate/spa

# Non-parametric adaptive estimation of the drift for a jump diffusion process

Émeline Schmisser\*

Université Lille 1, Laboratoire Paul Painlevé, France

Received 12 April 2013; received in revised form 24 September 2013; accepted 24 September 2013 Available online 7 October 2013

### Abstract

In this article, we consider a jump diffusion process  $(X_t)_{t\geq 0}$  observed at discrete times  $t = 0, \Delta, \ldots, n\Delta$ . The sampling interval  $\Delta$  tends to 0 and  $n\Delta$  tends to infinity. We assume that  $(X_t)_{t\geq 0}$  is ergodic, strictly stationary and exponentially  $\beta$ -mixing. We use a penalised least-square approach to compute two adaptive estimators of the drift function *b*. We provide bounds for the risks of the two estimators. © 2013 Elsevier B.V. All rights reserved.

Keywords: Jump diffusions; Nonparametric estimation; Drift estimation; Model selection

### 1. Introduction

We consider a general diffusion with jumps:

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t + \xi(X_{t^-})dL_t \quad \text{and} \quad X_0 = \eta \tag{1}$$

where  $L_t$  is a centred pure jump Levy process:

$$dL_t = \int_{z \in \mathbb{R}} z \left( \mu(dt, dz) - dt \nu(dz) \right)$$

with  $\mu$  a random Poisson measure with intensity measure  $\nu(dz)dt$  such that  $\int_{z\in\mathbb{R}} z^2\nu(dz) < \infty$ . The compensated Poisson measure  $\tilde{\mu}$  is defined by  $\tilde{\mu}(dt, dz) = \mu(dt, dz) - \nu(dz)dt$ . The random variable  $\eta$  is independent of  $(W_t, L_t)_{t\geq 0}$ . Moreover,  $(W_t)_{t\geq 0}$  and  $(L_t)_{t\geq 0}$  are independent.

\* Tel.: +33 320436764.

E-mail address: emeline.schmisser@math.univ-lille1.fr.

<sup>0304-4149/\$ -</sup> see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.spa.2013.09.012

This process is observed with high frequency (at times  $t = 0, \Delta, ..., n\Delta$  where, as *n* tends to infinity, the sampling interval  $\Delta \rightarrow 0$  and the time of observation  $n\Delta \rightarrow \infty$ ). It is assumed to be ergodic, stationary and exponentially  $\beta$ -mixing (see [15] for sufficient conditions). Our aim is to construct a non-parametric estimator of *b* on a compact set *A*.

The non-parametric estimation of b and  $\sigma$  for a diffusion process observed with highfrequency is well-known (see for instance [10,6]). Diffusion processes with jumps are used in various fields, for instance in finance, for modelling the growth of a population, in hydrology, in medical science, ..., but there exist few results for the non-parametric estimation of b and  $\sigma$ . Mai [13] and Shimizu and Yoshida [21] construct maximum-likelihood estimators of parameters of b. Their estimators reach the standard rate of convergence,  $\sqrt{n\Delta}$ . Shimizu [20] and Mancini and Renò [14] use a kernel estimator to obtain non parametric threshold estimators of  $\sigma$ . Mancini and Renò [14] also construct a non-parametric truncated estimator of b, but only when  $L_t$ is a compound Poisson process. To our knowledge, minimax rates of convergences for nonparametric estimators of b,  $\sigma$  or  $\xi$  for jump-diffusion processes are not available in the literature (see [10] or [9] for rates of convergence for diffusion processes).

In this paper, we use model selection to construct two non-parametric estimators of b under the asymptotic framework  $\Delta \to 0$  and  $n\Delta \to \infty$ . This method was introduced by Birgé and Massart [4].

First, we introduce a sequence of linear subspaces  $S_m \subseteq L^2(A)$  and, for each *m*, we construct an estimator  $\hat{b}_m$  of *b* by minimising on  $S_m$  the contrast function:

$$\gamma_n(t) = \frac{1}{n} \sum_{k=1}^n \left( Y_{k\Delta} - t(X_{k\Delta}) \right)^2 \quad \text{where } Y_{k\Delta} = \frac{X_{(k+1)\Delta} - X_{k\Delta}}{\Delta}.$$

We obtain a collection of estimators of the drift function b and we bound their risks (Theorem 2). Then, we introduce a penalty function to select the "best" dimension m and we deduce an adaptive estimator  $\hat{b}_{\hat{m}}$ . Under the assumption that  $\nu$  is sub-exponential, that is if there exist two positive constants C,  $\lambda$  such that, for z large enough,  $\nu([-z, z]^c) \leq Ce^{-\lambda z}$ , the risk bound of  $\hat{b}_{\hat{m}}$  is exactly the same as for a diffusion without jumps (Theorem 4) (see [6] or [10]).

In a second part, we do not assume that  $\nu$  is sub-exponential and we construct a truncated estimator  $\tilde{b}_m$  of b. We minimise the contrast function

$$\tilde{\gamma}_n(t) = \frac{1}{n} \sum_{k=1}^n \left( Y_{k\Delta} \mathbb{1}_{|Y_{k\Delta}| \le C_\Delta} - t(X_{k\Delta}) \right)^2 \quad \text{where } C_\Delta \propto \sqrt{\Delta} \ln(n)$$

in order to obtain a new estimator  $\tilde{b}_m$ . As in the first part, we introduce a penalty function to obtain an adaptive estimator  $\tilde{b}_{\tilde{m}}$ . The risk bound of this adaptive estimator depends on the Blumenthal–Getoor index of  $\nu$  (Theorems 7 and 10).

In Section 2, we present the model and its assumptions. In Sections 3 and 4, we construct the estimators and bound their risks. Some simulations are presented in Section 5. Proofs are gathered in Section 6.

## 2. Assumptions

#### 2.1. Assumptions on the model

We consider the following assumptions.

A1. The functions  $b, \sigma$  and  $\xi$  are Lipschitz.

Download English Version:

https://daneshyari.com/en/article/10527258

Download Persian Version:

https://daneshyari.com/article/10527258

Daneshyari.com