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Abstract

We prove the existence of a weak solution to a backward stochastic differential equation (BSDE)

Yt = ξ +

 T

t
f (s, Xs, Ys, Zs) ds −

 T

t
Zs dWs

in a finite-dimensional space, where f (t, x, y, z) is affine with respect to z, and satisfies a sublinear growth
condition and a continuity condition. This solution takes the form of a triplet (Y, Z , L) of processes defined
on an extended probability space and satisfying

Yt = ξ +

 T

t
f (s, Xs, Ys, Zs) ds −

 T

t
Zs dWs − (LT − L t )

where L is a martingale with possible jumps which is orthogonal to W . The solution is constructed on an
extended probability space, using Young measures on the space of trajectories. One component of this space
is the Skorokhod space D endowed with the topology S of Jakubowski.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Aim of the paper. Let (Ω , F , (Ft )t∈[0,T ], P) be a complete probability space, where (Ft )t≥0 is
the natural filtration of a standard Brownian motion W = (Wt )t∈[0,T ] on Rm and F = FT .

In this paper, we prove the existence of a weak solution (more precisely, a solution defined on
an extended probability space) to the equation

Yt = ξ +

 T

t
f (s, Xs, Ys, Zs) ds −

 T

t
Zs dWs − (LT − L t ) (1)

where f (t, x, y, z) is affine with respect to z, and satisfies a sublinear growth condition and a
continuity condition, W is an Rm-valued standard Brownian motion, Y and Z and L are unknown
processes, Y and L take their values in Rd , Z takes its values in the space L of linear mappings
from Rm to Rd , ξ ∈ L2

Rd is the terminal condition, and L is a martingale orthogonal to W , with
L0 = 0 and with càdlàg trajectories (i.e. right continuous trajectories with left limits at every
point). The process X = (X t )0≤t≤T is (Ft )-adapted and continuous with values in a separable
metric space M. This process represents the random part of the generator f and plays a very
small role in our construction. The space M can be, for example, some space of trajectories, and
X t can be, for example, the history until time t of some process ζ , i.e. X t = (ζs∧t )0≤s≤T .

Such a weak solution to (1) can be considered as a generalized weak solution to the more
classical equation

Yt = ξ +

 T

t
f (s, Xs, Ys, Zs) ds −

 T

t
Zs dWs . (2)

Historical comments. Existence and uniqueness of the solution (Y, Z) to a nonlinear BSDE of
the form

Yt = ξ +

 T

t
f (s, Ys, Zs) ds −

 T

t
Zs dWs

have been proved in the seminal paper [30] by E. Pardoux and S. Peng, in the case when the
generator f is random with f (·, 0, 0) ∈ L2(Ω × [0, T ]), and f (t, y, z) is Lipschitz with respect
to (y, z), uniformly in the other variables. In [26], J.P. Lepeltier and J. San Martı́n proved in the
one dimensional case the existence of a solution when f is random, continuous with respect to
(y, z) and satisfies a linear growth condition ∥ f (t, y, z)∥ ≤ C(1 + ∥y∥ + ∥z∥).

Equations of the form (2), with f depending on some other process X , appear in forward–
backward stochastic differential equations (FBSDEs), where X is a solution of a (forward)
stochastic differential equation.

As in the case of stochastic differential equations, one might expect that BSDEs with
continuous generator always admit at least a weak solution, that is, a solution defined on a
different probability space (generally with a larger filtration than the original one). A work in
this direction but for forward–backward stochastic differential equations (FBSDEs) is that of
K. Bahlali, B. Mezerdi, M. N’zi and Y. Ouknine [4], where the original probability is changed
using Girsanov’s theorem. Let us also mention the works on weak solutions to FBSDEs by
Antonelli and Ma [2], and Delarue and Guatteri [13], where the change of probability space
comes from the construction of the forward component.

Weak solutions where the filtration is enlarged have been studied by R. Buckdahn,
H.J. Engelbert and A. Răşcanu in [11] (see also [9,10]), using pseudopaths and the Meyer–Zheng
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