

Available online at www.sciencedirect.com

stochastic processes and their applications

Stochastic Processes and their Applications 126 (2016) 2388-2409

www.elsevier.com/locate/spa

Evolutionary games on the torus with weak selection

J. Theodore Cox^{a,1}, Rick Durrett^{b,*,1}

^a Department of Math., 215 Carnegie Building, Syracuse U., Syracuse NY, 13244-1150, United States ^b Department of Math., Duke U., P.O. Box 90320, Durham NC, 27708-0320, United States

Received 7 December 2015; received in revised form 1 February 2016; accepted 3 February 2016 Available online 2 March 2016

Abstract

We study evolutionary games on the torus with N points in dimensions $d \ge 3$. The matrices have the form $\overline{G} = 1 + wG$, where 1 is a matrix that consists of all 1's, and w is small. As in Cox Durrett and Perkins (2011) we rescale time and space and take a limit as $N \to \infty$ and $w \to 0$. If (i) $w \gg N^{-2/d}$ then the limit is a PDE on \mathbb{R}^d . If (ii) $N^{-2/d} \gg w \gg N^{-1}$, then the limit is an ODE. If (iii) $w \ll N^{-1}$ then the effect of selection vanishes in the limit. In regime (ii) if we introduce mutations at rate μ so that $\mu/w \to \infty$ slowly enough then we arrive at Tarnita's formula that describes how the equilibrium frequencies are shifted due to selection.

© 2016 Elsevier B.V. All rights reserved.

Keywords: Voter model; Voter model perturbation; PDE limit; Tarnita's formula

1. Introduction

Here we will be interested in *n*-strategy evolutionary games on the torus $\mathbb{T}_L = (\mathbb{Z} \mod L)^d$. Throughout the paper we will suppose that $n \ge 2$ and $d \ge 3$. The dynamics are described by a game matrix $G_{i,j}$ that gives the payoff to a player who plays strategy *i* against an opponent who plays strategy *j*. As in [7,8], we will study games with matrices of the form $\overline{G} = \mathbf{1} + wG$, and $\mathbf{1}$ is a matrix that consists of all 1's, and $w = \epsilon^2$. We use two notations for the small parameter to make it easier to connect with the literature.

http://dx.doi.org/10.1016/j.spa.2016.02.004

^{*} Corresponding author.

E-mail address: rtd@math.duke.edu (R. Durrett).

¹ JTC was partially supported by NSF grant DMS 1208984, RD by DMS 1305997.

^{0304-4149/© 2016} Elsevier B.V. All rights reserved.

There are two commonly used update rules. To define them introduce

Assumption 1. Let p be a probability distribution on \mathbb{Z}^d with finite range, p(0) = 0 and that satisfies the following symmetry assumptions.

- If π is a permutation of {1, 2, ..., d} and (πz)_i = z_{π(i)} then p(πz) = p(z).
 If we let ẑⁱ_i = -z_i and ẑⁱ_j = z_j for j ≠ i then p(ẑⁱ) = p(z).

For example, if $p(z) = f(||z||_p)$ where $||z||_p$ is the L^p norm on \mathbb{Z}^d with $1 \le p \le \infty$ then the symmetry assumptions are satisfied.

Birth–Death Dynamics. In this version of the model, a site x gives birth at a rate equal to its fitness

$$\psi(x) = \sum_{y} p(y - x)\overline{G}(\xi(x), \xi(y))$$

and the offspring, which uses the same strategy as the parent, replaces a "randomly chosen neighbor of x". Here, and in what follows, the phrase in quotes means z is chosen with probability p(z - x). Note that we use the same transition probability to compute the fitness and do the displacement. In general they can be different.

Death–Birth Dynamics. In this case, each site x dies at rate 1 and is replaced by the offspring of a neighbor y chosen with probability proportional to $p(y - x)\psi(y)$.

Tarnita et al. [23,24] have studied the behavior of evolutionary games on more general graphs when w = o(1/N) and N is the number of vertices. To describe their results, we begin with the two strategy game written as

$$G = \begin{array}{ccc} 1 & 2 \\ G = 1 & \alpha & \beta \\ 2 & \gamma & \delta. \end{array}$$
(1)

In [23] strategy 1 is said to be favored by selection (written 1 > 2) if the frequency of 1 in equilibrium is >1/2 when w is small. Assuming that

(i) the transition probabilities are differentiable at w = 0,

(ii) the update rule is symmetric for the two strategies, and

(iii) strategy 1 is not disfavored in the game given with $\beta = 1$ and $\alpha = \gamma = \delta = 0$

they argued that

I. 1 > 2 is equivalent to $\sigma \alpha + \beta > \gamma + \sigma \delta$ where σ is a constant that only depends on the spatial structure and update rule.

In [8] it was shown that for games on \mathbb{Z}^d with $d \geq 3$.

Theorem 1. I holds for the Birth–Death updating with $\sigma = 1$ and for the Death–Birth updating with $\sigma = (\kappa + 1)/(\kappa - 1)$ where

$$\kappa = 1 / \sum_{x} p(x)p(-x)$$
⁽²⁾

is the effective number of neighbors.

Download English Version:

https://daneshyari.com/en/article/10527303

Download Persian Version:

https://daneshyari.com/article/10527303

Daneshyari.com