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The scaling limits of the non critical strip wetting model.
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Abstract

The strip wetting model is defined by giving a (continuous space) one dimensional random walk S

a reward β each time it hits the strip R+× [0, a] (where a is a positive parameter), which plays the

role of a defect line. We show that this model exhibits a phase transition between a delocalized

regime (β < βac ) and a localized one (β > βac ), where the critical point βac > 0 depends on S and

on a. In this paper we give a precise pathwise description of the transition, extracting the full

scaling limits of the model. Our approach is based on Markov renewal theory.
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renewal theory.

2000 MSC: 60K15, 60K20, 60K05, 82B27, 60K35, 60F17.

1. Introduction and main results

1.1. Definition of the models

We consider (Sn)n≥0 a random walk such that S0 := 0 and Sn :=
∑n
i=1Xi where the Xi’s are

i.i.d. and X1 has a density h(·) with respect to the Lebesgue measure. We denote by P the law

of S, and by Px the law of the same process starting from x. We assume that h(·) is continuous

and bounded on R, that h(·) is positive in a neighborhood of the origin, that E[X] = 0 and that

E[X2] =: σ2 ∈ (0,∞). We fix a > 0 in the sequel.

The fact that h is continuous and positive in the neighborhood of the origin entails that

n0 := inf
n∈Z+

{
(P[Sn > a],P[−Sn > a]) ∈ (0, 1)2

}
<∞. (1)

For N a positive integer, we consider the event CN := {S1 ≥ 0, . . . , SN ≥ 0}. We define the

probability law (the free wetting model in a strip) Pf
N,a,β on RN by

dPf
N,a,β

dP
:=

1

ZfN,a,β
exp

(
β

N∑

k=1

1Sk∈[0,a]

)
1CN (2)
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