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Abstract 3

This article deals with averaging principle for stochastic hyperbolic–parabolic equations with slow and 4

fast time-scales. Under suitable conditions, the existence of an averaging equation eliminating the fast 5

variable for this coupled system is proved. As a consequence, an effective dynamics for slow variable 6

which takes the form of stochastic wave equation is derived. Also, the rate of strong convergence for the 7

slow component towards the solution of the averaging equation is obtained as a byproduct. 8
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1. Introduction 13

Let D = (0, L) ⊂ R be a bounded open interval. In the article, for fixed T0 > 0, we are 14

concerned with the following stochastic hyperbolic–parabolic equation, 15

∂2 X ϵt (ξ)

∂t2 = ∆X ϵt (ξ)+ f (X ϵt (ξ), Y ϵt (ξ))+ σ1
˙W 1
t (ξ), (1.1) 16
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∂Y ϵt (ξ)

∂t
=

1
ϵ
∆Y ϵt (ξ)+

1
ϵ

g(X ϵt (ξ), Y ϵt (ξ))+
σ2
√
ϵ

˙W 2
t (ξ), (1.2)1

X ϵt (ξ) = Y ϵt (ξ) = 0, (ξ, t) ∈ ∂D × (0, T0], (1.3)2

X ϵ0(ξ) = X0(ξ), Y ϵ0 (ξ) = Y0(ξ),
∂X ϵt (ξ)

∂t
|t=0 = Ẋ0(ξ), ξ ∈ D, (1.4)3

where the space variable ξ ∈ D, the time t ∈ [0, T0]. The drifts f and g are suitable real-valued4

functions defined on R2 which are assumed to be Lipschitz continuous and in particular to have5

sublinear growth. The stochastic perturbations are of additive type and W 1
t (ξ) and W 2

t (ξ) are6

mutually independent Wiener processes on a complete stochastic basis (Ω ,F ,Ft ,P), which7

will be specified later. The noise coefficients σ1 and σ1 are positive constants and the parameter8

ϵ is small and positive, which describes the ratio of time scale between the process X ϵt (ξ) and9

Y ϵt (ξ). With this time scale the variable X ϵt (ξ) is referred as slow component and Y ϵt (ξ) as the10

fast component.11

The system (1.1)–(1.4) is an abstract model for a random vibration of a elastic string with12

external force on a large time scale. More generally, the nonlinear coupled wave–heat equa-13

tions with fast and slow time scales may describe a thermoelastic wave propagation in a random14

medium [8], the interactions of fluid motion with other forms of waves [21,34], wave phenom-15

ena which are heat generating or temperature related [20], magneto-elasticity [24] and biological16

problems [7,3,28]. In this respect, the question of how the physical effects at large time scales17

influence the dynamics of the system (1.1)–(1.4) is arisen. We focus on this question and show18

that, under some dissipative conditions on fast variable equation (1.2), the complexities effects at19

large time scales to the asymptotic behavior of the slow component can be omitted or neglected20

in some sense.21

Averaging methods are essential for describing and understanding the asymptotic behavior22

of dynamical systems with fast and slow variables. Its basic idea is to approximate the original23

system by a reduced system. The theory of averaging for deterministic dynamical systems, which24

was first studied by Bogoliubov [1], has a long and rich history. Further developments of the25

theory, for finite dimensional dynamical systems under random influences, was first shown by26

Khasminskii [15]. Since then, there is an extensive literature on this topic for finite dimensional27

systems with random perturbation (see Freidlin and Wentzell [11,12], Veretennikov [25,26] and28

Kifer [17–19]).29

Recently, the averaging approach is developed to study the effective approximation to30

slow–fast random dynamical systems in infinite dimension. In [6] Cerrai and Freidlin presents an31

averaged result for stochastic parabolic equations with additive noise and Cerrai [4] deals with32

the case of multiplicative noise. The two papers show that the averaging principle, in sense of33

convergence in probability without a explicit rate, holds for that stochastic systems with fast and34

slow timescales. In [2] Bréhier derives explicit convergence rates in strong and weak convergence35

for averaging of stochastic parabolic equations when the additive noise is included only in the36

fast motion. These convergence rates are the same as for the finite dimensional cases [22,16].37

However, to the best of our knowledge, the averaging principle for the stochastic hyperbolic–38

parabolic equations has not been so far solved. In this article, the main objective is to establish an39

effective approximation for slow process X ϵt with respect to the limit ϵ → 0+. As a consequence,40

a reduction system without the fast motion Y ϵt , capturing the dynamics of the slow motion is41

derived. The averaging methods procedure can be used, as it is done in [6,4,5] for stochastic42

partial equations of parabolic type and for stochastic ordinary differential equations [14,22,29,43

27,32,30,33,31]. To be more precise, the slow component X ϵt can be approximated by the solution44
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