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Abstract 3

For some backward stochastic Volterra integral equations (BSVIEs) in multi-dimensional Euclidean 4

spaces, comparison theorems are established in a systematic way for the adapted solutions and adapted 5

M-solutions. For completeness, comparison theorems for (forward) stochastic differential equations, 6

backward stochastic differential equations, and (forward) stochastic Volterra integral equations (FSVIEs) 7

are also presented. Duality principles are used in some relevant proofs. Also, it is found that certain kinds of 8

monotonicity conditions play crucial roles to guarantee the comparison theorems for FSVIEs and BSVIEs 9

to be true. Various counterexamples show that the assumed conditions are almost necessary in some sense. 10
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14

1. Introduction 15

Throughout this paper, we let (Ω ,F ,F,P) be a complete filtered probability space on which 16

an m-dimensional standard Brownian motion W (·) is defined with F = {Ft }t≥0 being its natural 17

filtration augmented by all the P-null sets. We consider the following equation in the usual
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n-dimensional real Euclidean space Rn :1

Y (t) = ψ(t)+

 T

t
g(t, s, Y (s), Z(t, s), Z(s, t))ds −

 T

t
Z(t, s)dW (s),2

t ∈ [0, T ], (1.1)3

which is called a backward stochastic Volterra integral equation (BSVIE, for short). Such kind4

of equations have been investigated in the recent years (see [21,37–39,32,2], and references5

cited therein). BSVIEs are natural extensions of by now well-understood backward stochastic6

differential equations (BSDEs, for short) whose integral form is as follows:7

Y (t) = ξ +

 T

t
g(s, Y (s), Z(s))ds −

 T

t
Z(s)dW (s), t ∈ [0, T ]. (1.2)8

See [27,8,23,41] for some standard results on BSDEs.9

A pair of processes (Y (·), Z(· , ·)) is called an adapted solution to BSVIE (1.1) if for each10

t ∈ [0, T ], s → (Y (s), Z(t, s)) is F-adapted on [t, T ] and (1.1) is satisfied in the usual Itô’s11

sense. Further, an adapted solution (Y (·), Z(· , ·)) is called an adapted M-solution of (1.1) if, in12

addition, the following holds:13

Y (t) = EY (t)+

 t

0
Z(t, s)dW (s), t ∈ [0, T ]. (1.3)14

In the case that the generator g(·) is independent of Z(s, t), one can show that under proper15

conditions, BSVIE (1.1) admits a unique adapted solution (t, s) → (Y (s), Z(t, s)) with 0 ≤ t ≤16

s ≤ T . In this case, the values of Z(t, s) for 0 ≤ s < t ≤ T are irrelevant. On the other hand,17

when the generator g(·) does depend on Z(s, t), the adapted solution (t, s) → (Y (s), Z(t, s))18

has to be defined on [0, T ] × [0, T ]. In this case, adapted solution will not be unique in general.19

However, under suitable conditions, BSVIE (1.1) admits a unique adapted M-solution [39].20

An interesting result of BSDEs is the comparison theorem for the adapted solutions. More21

precisely, for the case n = 1, if for i = 0, 1, (Y i (·), Z i (·)) is the adapted solution to the BSDE22

(1.2) with (ξ, g(·)) replaced by (ξ i , gi (·)) such that23 
ξ0

≤ ξ1, a.s.,
g0(t, y, z) ≤ g1(t, y, z), ∀(t, y, z) ∈ [0, T ] × R × R, a.s.,

(1.4)24

then25

Y 0(t) ≤ Y 1(t), t ∈ [0, T ], a.s. (1.5)26

The comparison theorem also holds for the case n > 1, see [15] for details. Thanks to the27

comparison theorem, the adapted solutions to BSDEs can be used as (time-consistent) dynamic28

risk measures or stochastic differential utility for (static) random variables which could be the29

payoff of a European type contingent claim at the maturity (see [8,28]).30

Now, for BSVIEs, it is natural to ask if a comparison theorem similar to that for BSDEs holds.31

More precisely, if (Y i (·), Z i (· , ·)) is the adapted solution to BSVIE (1.1) when the generator g(·)32

is independent of Z(s, t), or is the adapted M-solution of (1.1) when g(·) depends on Z(s, t), with33

(ψ(·), g(·)) replaced by (ψ i (·), gi (·)), i = 0, 1, and34 
ψ0(t) ≤ ψ1(t), t ∈ [0, T ], a.s.,
g0(t, s, y, z, ζ ) ≤ g1(t, s, y, z, ζ ), 0 ≤ t ≤ s ≤ T, y, z, ζ ∈ R, a.s.,

(1.6)35
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