ARTICLE IN PRESS

BBAPAP-39238; No. of pages: 12; 4C: 3, 5, 6, 7, 8, 10

Biochimica et Biophysica Acta xxx (2013) xxx-xxx

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbapap

The crowd you're in with: Effects of different types of crowding agents on protein aggregation

Q2 Q1 Leonid Breydo ^a, Krishna D. Reddy ^a, Alessandro Piai ^b, Isabella C. Felli ^b, Q3 Roberta Pierattelli ^b, Vladimir N. Uversky ^{a,c,d}

- ^a Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- ^b Center for Magnetic Resonance, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
 - ^c Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
 - ^d Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia

ARTICLE INFO

11 Article history:

9

10

40 39

41

42

43

44

45 46

47

48

49 50

51

52 53

54

55 56

57

58

59 60

61

- 12 Received 21 September 2013
- 13 Received in revised form 1 November 2013
 - Accepted 11 November 2013
- 15 Available online xxxx

- 20 Amyloid
- 21 Crowding
- Protein aggregationFlexibility
- 24 Intrinsic disorder

ABSTRACT

The intracellular environment contains high concentrations of macromolecules occupying up to 30% of the total 25 cellular volume. Presence of these macromolecules decreases the effective volume available for the proteins in 26 the cell and thus increases the effective protein concentrations and stabilizes the compact protein conformations. 27 Macromolecular crowding created by various macromolecules such as proteins, nucleic acids, and carbohydrates 28 has been shown to have a significant effect on a variety of cellular processes including protein aggregation. Most 29 studies of macromolecular crowding have used neutral, flexible polysaccharides that function primarily via ex-30 cluded volume effect as model crowding agents. Here we have examined the effects of more rigid polysaccharides 31 rides on protein structure and aggregation. Our results indicate that rigid and flexible polysaccharides 32 influence protein aggregation via different mechanisms and suggest that, in addition to excluded volume effect, 33 changes in solution viscosity and non-specific protein-polymer interactions influence the structure and dynam-34 ics of proteins in crowded environments.

 $\hbox{@ 2013}$ Published by Elsevier B.V. $\,36$

1. Introduction

Protein aggregation is associated with a variety of human diseases including Alzheimer's, Parkinson's, and Huntington's diseases, prionopathies, and type II diabetes. Protein aggregation usually starts from the protein in a partially unfolded conformation similar to the pre-molten globule state [1]. In order to access this conformation, a folded protein needs to partially unfold, while an intrinsically disordered protein (IDP) needs to partially fold. In addition, the mechanism of aggregation is usually a rather complex process with many intermediate oligomeric states characterized by variable extent of secondary structure [2–5]. Some of these oligomers easily convert to fibrils while others have a high degree of kinetic stability.

Investigation of protein aggregation is complicated by the fact that the in vivo environment is crowded with macromolecules, such as proteins, nucleic acids, and carbohydrates, which occupy up to 30% of the available volume. Macromolecular crowding increases the effective protein concentration, decreases the protein diffusion rate, promotes partial folding of some intrinsically disordered proteins and facilitates their aggregation [6]. It has been previously shown that macromolecular crowding has a significant effect on protein–protein interactions including protein aggregation [7]. Crowding tends to stabilize compact protein

E-mail addresses: lbreydo@health.usf.edu (L. Breydo), vuversky@health.usf.edu (V.N. Uversky).

1570-9639/\$ – see front matter © 2013 Published by Elsevier B.V. http://dx.doi.org/10.1016/j.bbapap.2013.11.004 conformations. These conformations can be either on the pathway to 62 folding or on the pathway to aggregation depending on the protein 63 and the assay conditions. Thus, the effect of crowding agents on protein 64 aggregation depends on the nature of the protein. 65

Most studies of the effects of crowding on protein aggregation have 66 used flexible, hydrophilic polymers (PEG, dextran and Ficoll). Due to 67 their compact, largely spherical shape these polymers have relatively 68 small surface to volume ratio. They are neutral and relatively hydrophil-69 ic minimizing their specific interactions with proteins. Thus these polymers are believed to act primarily via excluded volume effect by 71 decreasing the effective volume available for the proteins in the cell 72 and thus increasing the effective protein concentration. It has been 73 shown that aggregation of many proteins and peptides is accelerated 74 by the presence of dextrans and other neutral flexible crowding agents 75 [8–12]. However, for some proteins with highly stable folded native 76 states (e.g. lysozyme or superoxide dismutase) addition of crowding 77 agents has been shown to inhibit aggregation [11].

A variety of other, more rigid biopolymers are also present in vivo in-79 cluding DNA, protein fibers and polysaccharide components of extracel-80 lular matrix. Solutions of rigid polymers have higher viscosity that may 81 affect protein diffusion and slow down protein folding or aggregation. 82 These polymers also have lower density making them more effective 83 in creating excluded volume effect as intrinsic viscosity of a polymer is 84 proportional to its volume [13]. Lower polymer density also increases 85 the exposed surface of rigid polymers available for interactions with 86

 $Please\ cite\ this\ article\ as:\ L.\ Breydo,\ et\ al.,\ The\ crowd\ you're\ in\ with:\ Effects\ of\ different\ types\ of\ crowding\ agents\ on\ protein\ aggregation,\ Biochim.\ Biophys.\ Acta\ (2013),\ http://dx.doi.org/10.1016/j.bbapap.2013.11.004$

87

88

89

91

92

93 94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

112 113

114

115

116

117

118

119

120

121

122

123

124

125

126

127 128

129

130

131

132 133

134

135

136

137

138

139

140

141

142

143

proteins. Here we investigated the effects of both compact, flexible polysaccharides (dextrans) and more rigid cellulose derivatives (hydroxypropyl celluloses or HPCs) on the kinetics and mechanism of aggregation of several proteins with variable degrees of intrinsic disorder. We selected neutral, hydrophilic polysaccharides to minimize the specific protein-polymer interactions. In order to test the effects of these polymers on the protein structure and aggregation, we selected several small proteins with different structural and dynamic properties such as the degree of intrinsic disorder and oligomeric state. We tested aggregation of these proteins in the presence of polysaccharides in the conditions previously determined to be favorable for their conversion to amyloid fibrils. We examined the effects of the polysaccharides both on kinetics of aggregation and the structure of the aggregates.

2. Materials and methods

2.1. Materials

Recombinant α-synuclein was a gift from Dr. Munishkina (University of California Santa Cruz). Recombinant human insulin was from Akron Biotech (Boca Raton, FL). A commercially available mixture of core histones H2A, H2B, H3 and H4 from calf thymus (Calbiochem) was used without additional fractionation. Recombinant 13C-15N enriched α -synuclein was prepared as previously described [14]. All other proteins and chemicals were from Sigma, Fisher Scientific or VWR Scientific.

2.2. Methods

2.2.1. Protein aggregation assays

Conditions for protein aggregation were optimized for each protein. Aggregation of insulin was studied in two sets of conditions: low pH, which stabilizes the monomeric form of the protein, and neutral pH, which stabilizes the insulin hexamer. At low pH aggregation of insulin (0.5 mg/ml) was conducted in glycine buffer (20 mM, pH 2.5) at 37 °C. The protein was dissolved directly in this buffer and incubated for 5 min prior to the start of the reaction. At neutral pH insulin (1.2 mg/ml) was aggregated in 20 mM sodium phosphate (pH 7.5) at 37 °C. Aggregation of histones (0.75 mg/ml) was conducted in the glycine buffer (20 mM glycine, pH 2.5) in the presence of 0.7 M NaCl at 37 °C. Histones were initially dissolved in 5 mM HCl at 4 mg/ml, incubated in this solution for 5 min and diluted into the final reaction buffer. Aggregation of α -synuclein (0.4 mg/ml) was conducted in 20 mM acetate buffer, pH 3.5 in the presence of 0.1 M NaCl at 37 °C. Protein was initially dissolved in 5 mM NaOH at 4 mg/ml, incubated in this solution for 1 min and diluted into the final reaction buffer. α -Lactalbumin (0.2 mg/ml) was aggregated in 40 mM phosphate buffer (pH 7.0) in the presence of 0.1 M NaCl, 1 mM EGTA and 2 mM DTT at 30 °C. Lysozyme (0.25-0.75 mg/ml) was aggregated in 25 mM potassium phosphate buffer (pH 2.0) in the presence of 225 mM NaCl at 39 °C using a modification of the method of Hill et al. [15].

Protein aggregation in the automated format was carried out in a reaction volume of 0.1 ml in black, flat-bottomed 96-well plates in the presence of 10 µM ThT. Two Teflon or polyethylene balls (2.38 mm diameter, Precision Ball, Reno, PA) were placed into each well of a 96well plate. The reaction mixture containing protein and ThT (350 μl) was split into three wells (100 µl into each well), the plates were covered by Mylar septum sheets (Thermo), and incubated with continuous orbital shaking at 280 rpm in an Infinite M200 Pro microplate reader (Tecan). The kinetics was monitored by top reading of fluorescence intensity every 3-8 min using 444 nm excitation and 485 nm emission filters. Data from replicate wells were averaged before plotting fluorescence vs time. The data were fit to a sigmoidal equation using Origin (OriginLab, Northampton, MA). The equation [16,17] was:

$$F = A + B/(1 + \exp(k \times (t - t_m))) \tag{1}$$

where A is the initial level of ThT fluorescence, B is the difference be- 146 tween the final level of ThT fluorescence and its initial level, k is the 148 rate constant of amyloid accumulation (h^{-1}) and t_m is the midpoint of 149 transition. The lag time (t_1) of amyloid formation was calculated as 150 $t_1 = t_m - 2 / k$. The parameters derived from this equation are: yield 151 of amyloid (B), lag time (t_1), and elongation rate (k) of amyloid. Initia- 152 tion rate was defined as the inverse of lag time. Although Eq. (1) gave 153 good fits for the ThT kinetic profiles, the expression is strictly an empir- 154 ical means of deriving kinetic parameters from the data and does not 155 necessarily reflect the underlying complex kinetic scheme. 156

2.2.2. Electron microscopy

10 μl aliquots of protein solutions (0.1–0.3 mg/ml) were adsorbed 158 onto 200 mesh formvar/carbon-coated nickel grids for 5 min. The 159 grids were washed with water (10 µl), stained with 2% uranyl acetate 160 for 2 min and washed with water again. The samples were analyzed 161 with a JEM 1400 transmission electron microscope (JEOL) operated at 162 80 kV. 163

157

164

183

197

2.2.3. NMR

All the spectra were acquired at a 21.1 T Bruker AVANCE spectrom- 165 eter operating at 898.71 MHz for ¹H. Samples were measured at 166 285.5 K, unless otherwise specified, by using a cryogenically cooled 167 triple-resonance probe head. The stock α -synuclein solution was 168 0.6 mM ¹³C, ¹⁵N labeled α-synuclein in 20 mM potassium phosphate 169 buffer, pH 6.5, 200 mM NaCl, 0.5 mM EDTA. Generally the samples 170 were prepared by taking 150 µl of the stock solution and adding either 171 buffer or the appropriate amount of crowder and buffer up to a final volume of 200 µl in a 3 mm NMR tube. Final concentrations of polymers 173 were 5% for dextran 100 and 2.5% for HPC 100. The peak volumes 174 were calculated using a routine implemented in the program CARA [18]. 175

2.2.4. FTIR

FTIR spectra were measured with a Bruker Tensor 37 FTIR instru- 177 ment (Bruker Optics, Billerica, MA) equipped with a DTGS detector. 178 Aqueous protein solutions (25 µl, 1.2 mg/ml) were loaded into the 179 BioATRcell II. 512 scans at 2 cm⁻¹ resolution were collected for each 180 sample, corrected for water vapor, and background spectra were 181 subtracted.

2.2.5. CD

Far-UV CD (195–260 nm) spectra of proteins were measured using a 184 JASCO J-815 spectropolarimeter at room temperature. A solution of protein (110 µl, 1 mg/ml) was placed into a 0.2 mm pathlength cell 186 (0.1 mm pathlength for histones), and the CD spectra were acquired 187 with 20 nm/min scan speed at 0.1 nm step size and 1.0 nm bandwidth 188 under constant purging with nitrogen. Four spectra were accumulated 189 and averaged for each sample. The same buffer was used for CD and 190 FTIR measurements and for protein aggregation experiments.

2.2.6. Viscosity measurements

Viscosity of polymer solutions was determined with an Ostwald viscometer (Cannon Instruments) at 25 °C. In a typical experiment, a solution of polymer in water (2 ml) was loaded into the viscometer and the 195 time taken for it to pass between the marks was measured with a stopwatch. Each measurement was performed at least in triplicate.

2.2.7. Determination of global stability

Aggregated samples (1–3 µl) were suspended in HEPES buffer (20 µl 199 total volume, 50 mM, pH 7.5) containing different concentrations of 200 GdnSCN. The solution was incubated for 1 h at 24 °C and then diluted 201 to 300 µl with 6 M GdnSCN and HEPES buffer (50 mM, pH 7.5) 202 adjusting the final concentration of GdnSCN to 0.2 M. Fluorescence 203 spectra were recorded in the presence of 10 µM ThT. Excitation wave- 204 length was 442 nm and emission spectrum was recorded in 470- 205 500 nm range. Excitation slit was at 2.5 nm and emission slit at 5 nm. 206

Download English Version:

https://daneshyari.com/en/article/10536712

Download Persian Version:

https://daneshyari.com/article/10536712

<u>Daneshyari.com</u>