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With the advent of mass spectrometry based proteomics, the identification of thousands of proteins has
become commonplace in biology nowadays. Increasingly, efforts have also been invested toward the detection
and localization of posttranslational modifications. It is furthermore common practice to quantify the identified
entities, a task supported by a panel of differentmethods. Finally, the results can also be enrichedwith functional
knowledge gained on the proteins, detecting for instance differentially expressed gene ontology terms or
biological pathways.
In this study, we review the resources, methods and tools available for the researcher to achieve such a quan-
titative functional analysis. These include statistics for the post-processing of identification and quantification
results, online resources and public repositories. With a focus on free but user-friendly software, preferably
also open-source, we provide a list of tools designed to help the researcher manage the vast amount of
data generated. We also indicate where such applications currently remain lacking. Moreover, we stress
the eventual pitfalls of every step of such studies. This article is part of a Special Issue entitled: Computational
Proteomics in the Post-Identification Era.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The progress in the application of mass spectrometry to biological
compounds has revolutionized the field of biology: the large scale
identification of proteins provides a unique snapshot of a biological
system of interest at a given time point [1,2]. The study of proteins
and their modifications in a single sample, or differentially between
samples dramatically increased our understanding of living cells and
allowed the setup of ambitious experiments [3–5] opening new
opportunities for biomedical research [6]. The canonical example of
the latter is the comparison of the proteomes of a disease affected
population against those of a control population [7]. Such studies
aim to identify biomarkers – an easily detectable indicator of a biolog-
ical state – for the targeted disease [8]. However, the efficiency of

statistical comparison between metrics associated to a biological en-
tity is questioned in the literature [9–12]. Indeed, such studies suffer
from the high variance inherently found in biological systems [9],
from the low number of replicates typically analyzed [10], and from
experimental artifacts, errors and missing values [13–15]. As a result,
the fine nuances of the proteomic variations are often not statistically
significant when compared to the global variance of the system.

In order to tackle these issues, the proteomics community has
started an ambitious systematic sharing of resources [16]. The ratio-
nale is the following: when bringing knowledge from previous exper-
iments and other fields like genomics and transcriptomics together,
one will have a better understanding of the results and might be
able to extract patterns of interest from the crowd [17]. As a result,
the community saw the emergence of quantitative biological pathway
or protein interaction analyses. Such systemic approaches aim at pro-
viding a fine grained picture of the biological features of interest, hoping
at identifying pathology specific disturbances undetectable otherwise.

This process can typically be subdivided into fourmain tasks: (1) the
identification of the biological entities, (2) their absolute or relative
quantification, (3) the functional analysis of these entities, and (4) the
public dissemination of the results in standardized formats. Starting
from the identified and quantified peptides and proteins results canon-
ically obtained from a shotgun proteomics experiment [18], we thus
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detail in the present review the current follow-up resources available
in proteomics. Focusing on free and user-friendly tools, we list the
applications – when existing – allowing researchers to reach these
objectives. We also list the potential pitfalls involved in these post-
identification steps.

2. Global PTM, peptides and protein identification

The typical outcome of a proteomic identification process is a list
of identified peptides and proteins with posttranslational modifica-
tions (PTMs) mapped onto the sequence. However, these identifica-
tions typically contain a certain proportion of false positives [19].
Tremendous progress has been achieved in the monitoring of error
rates in proteomics, notably with the use of target-decoy databases
[20] — as comprehensively reviewed by Nesvizhskii AI [21]. It has
therefore become possible to filter a dataset of interest at a desired
False Discovery Rate [22] (FDR) independently from the specific scor-
ing used by the search engine — a demarche common to other scien-
tific fields [23]. For example, in a previous study [24], where three
isoelectric focusing (IEF) fractions of the same sample were analyzed
using OMSSA [25], a canonical FDR threshold set at 1% required the
filtering of all hits with an e-value higher than 0.15, 0.20 and 0.19
for fractions 3, 9 and 20, respectively.

When comparing the target and decoy distribution of hits at
these scores, it is possible to estimate an unbiased quality metric,
the Posterior Error Probability (PEP) [26]. Concretely, among hundred
hits with a PEP of 25%, one expects 25 false positives, 75 true positives.
The complement of the PEP (100%–25% = 75%) hence indicates a con-
fidence in the identification. Note that the threshold scores used for the
IEF fractions example, although very similar, correspond to a confidence
of 72%, 96% and 84%, respectively. This variability in confidence be-
tween fractions at fixed FDR shows the heterogeneity found in prote-
omic results and highlights the necessity for thorough statistical
post-processing of the identification matches.

As schematized in Fig. 1A, proteomic experiments typically consist
of several samples that are measured in replicates (technical and
biological) and that may each be further fractionized. Peptides are
inferred from the obtained mass spectra, and proteins are then in
turn inferred from the peptides. In the example of the IEF fractions
above, we illustrate the importance of processing sets of spectra
specifically: the PEP at a given OMSSA score differs from one fraction
to the other. Using the OMSSA score for the merged PSM set hence re-
sults in a lower identification rate (6084 PSMs at 1% FDR, in orange
Fig. 1A) compared to the same set scored using a fraction specific
PEP (in black Fig. 1A, 6247 PSMs at 1% FDR: +2.6%). Such specific pro-
cessing, comparable to charge and modification specific scoring [27],
is also mandatory when different mass spectrometers or experimen-
tal workflows are used on the same sample. A critical point is then to
ensure a statistically relevant size of the subgroups of PSMs retained
for scoring [28]. Statistical processing hence makes it possible to filter
identification matches at a given quality threshold with a high accu-
racy [29] and merge the results a posteriori.

However, as illustrated in Fig. 1B with the concatenation of three
hypothetical datasets, merging results obtained on different repli-
cates substantially increases the share of false positives since false
positive identifications are more likely to differ between replicates
than true identifications — a problem well known to affect searches
using multiple search engines [30] and peptide and protein inference
approaches [31]. In this simple example, where every dataset was
filtered to 1% FDR, 25% of the correct matches were unique to a partic-
ular dataset, while all false positives were unique. The final FDR
therefore reached 1.7% across the datasets: it is hence vital to monitor
the quality level of the final result set. Crucially, as illustrated in Fig. 1C,
a peptide or a protein can score moderately (in orange) in each of the
replicates (like protein D), preventing it from being validated at a qual-
ity driven FDR within that replicate. However, its presence among all
replicates may make it more confident than another protein scoring
well in only one replicate (like protein C). Keeping all identifications
from all datasets when creating the merged results and subsequently
filtering the combined set thus allows rescuing such peptides and pro-
teins, reducing the False Negative Rate (FNR).

Finally, as illustrated in Fig. 1D, when a peptide is shared between
different proteins (e.g., peptide 2 that is shared between proteins
A and B), it is not always possible to resolve the correct protein
identification; this is the well-described but often underestimated
protein inference problem [32], which has particularly strong incidence
on the quantification of proteins. In the illustrative example Fig. 1D, the
uniquely matched peptide 1 scores well in the first replicate and gives
evidence for the presence of protein A. In replicate 2 however, this pep-
tide now receives a poor score and would not pass a stringent quality
threshold, thus impairing the protein inference within this replicate.
This kind of situation typically occurs when proteins are identified
using different fractionation methods or different mass spectrometers.
It is hence crucial to consider all peptide candidates across all replicates
for protein inference as well.

In summary, an ideal post-identification workflow for proteomics
treats identification results accounting for specificities of fractions
and replicates (technical and biological) while taking advantage of
the study design in its whole to reduce the FNR at a controlled FDR.
However, such a statistical analysis is complicated by the fact that
identification results between fractions and replicates are not indepen-
dent. Moreover, there is no guarantee that the target/decoy strategy
holds when merging replicates. On the contrary, it can lead to similar
issues as multi-stage search strategies [33]. Finally, since such experi-
mental designs can easily lead to the generation of several millions of
spectra— as evidenced by some of the biggest datasets [34–37] submit-
ted to the PRoteomics IDEntifications (PRIDE) repository [38], global
analysis of complex proteomic studies is also challenging in terms of
processing time, computational space, and data management. Several
free packages exist that allow the processing of large sets of spectra
[39–43], these offer different solutions for the final compilation of the
results between replicates, most notably, the MaxQuant/Perseus [39]
tool combination allows combination of large datasets, statistical analy-
sis and interaction with external resources.

Fig. 1. Taking advantage of the experimental design. (A) A typical proteomics experiment consists of several samples analyzed in replicates. Here, we take the simple example of
three measurements of Isoelectric Focusing fractions from which we want to infer peptide and protein identifications. For every fraction, we represent the target/decoy derived
Posterior Error Probability (PEP) at a given score. For the merged result set of Peptide-Spectrum Matches (PSMs), the number of PSMs is plotted at a given False Discovery Rate
(FDR) when sorted against the OMSSA score (orange) and against the inferred PEP (black). (B) Processing all samples separately and merging the results increases the FDR
substantially: considering an example where 25% of the proteins identified in a sample are unique to that sample, and this includes all false positives (numbers in red). When merging
these three datasets (that are each filtered at 1% FDR), a final dataset is obtained with an FDR equal to 1.7%. (C)When considering six proteins identified in the three datasets at different
confidence levels (indicated by red, orange and green for bad, medium and good confidence, respectively), it can for instance be seen that protein D is found in all samples yet is not
validated due to its moderate score in each sample. The fact that it is found in all samples however, makes it quite likely that it should in fact be included in the global set of identifications.
Indeed, although a false negative in all datasets, this protein could be rescued by scoring the identifications globally. Similarly, protein B is not validated in sample 3 but its presence in the
global identification suggests that the peptides found in sample 3 should be used for quantification. (D) In proteomics it is sometimes impossible to infer the presence of a protein due to
the absence of an identified unique peptide as illustrated here for replicate 1. While protein sequences A and B can be distinguished by peptide 1, this peptide does not receive a high
enough score (orange) for identification, andwill therefore not be used for protein inference. In replicate 2 however, peptide 1 receives a higher score (green) allowing the unambiguous
identification of protein A. Yet if protein A is confidently identified in the second replicate, it is likely to have been in thefirst replicate aswell. A suitable study design can thus help resolve
protein inference by analyzing the data globally.
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