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The relationship between functional conformation changes and thermal dynamics of proteins is investigated
with the help of the torsional network model (TNM), an elastic network model in torsion angle space that we
recently introduced. We propose and test a null-model of “random” conformation changes that assumes that
the contributions of normal modes to conformation changes are proportional to their contributions to ther-
mal fluctuations. Deviations from this null model are generally small. When they are large and significant,
they consist in conformation changes that are represented by very few low frequency normal modes and
overcome small energy barriers. We interpret these features as the result of natural selection favoring the in-
trinsic protein dynamics consistent with functional conformation changes. These “selected” conformation
changes are more frequently associated to ligand binding, and in particular phosphorylation, than to pairs
of conformations with the same ligands. This deep relationship between the thermal dynamics of a protein,
represented by its normal modes, and its functional dynamics can reconcile in a unique framework the two
models of conformation changes, conformational selection and induced fit. The program TNM that computes
torsional normal modes and analyzes conformation changes is available upon request. This article is part of a
Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and
self-assembly.

© 2013 Published by Elsevier B.V.

1. Introduction

Proteins are molecular machines that perform their biological
function dynamically [1,2]. Stability, i.e., the existence of a well-
defined average three-dimensional structure, and at the same time
flexibility, i.e., the existence of intrinsic collective movements of
large amplitude, characterize the native state of ordered proteins
and are key for their catalytic activity [3], ligand binding ability [4],
and allosteric regulation [5].

For ordered proteins, the topology of the native state determines
to a large extent both the stability of the protein and its intrinsic
collective dynamics, which can be predicted by elastic network
models (ENM) [6–8,12]. They are Go-like models [9,10] that repre-
sent the energetics of the native state based only on its topology. Go
models and ENMs fulfill the principle of minimal frustration [11],
which assumes that all native interactions are at their energy mini-
mum. Several flavors of ENM have been described in the literature
[13]. We have recently introduced the torsional network model

(TNM) [14], which adopts the torsion angles of the protein backbone
as degrees of freedom, similar to other methods of normal mode
analysis and protein dynamics in torsion angle space [15–19]. The
TNM has the advantage that it represents all protein atoms with a
computationally affordable cost, concentrating on physically allowed
motions that do not modify bond lengths and bond angles.

The intrinsic dynamics of the native state of a protein modeled
through the ENM can be analytically studied using normal mode
analysis (NMA) [20]. NMA approximates the native energy landscape
as the harmonic well in the neighborhood of the equilibrium position,
and decomposes the native ensemble into a set of independent
motions, the normal modes. Low frequency normal modes tend to
represent collective motions that produce the largest displacements
from the average position. It has been observed that the low frequency
normal modes of the ENMs correlate with the intrinsic motions of the
protein measured by crystallographic B-factors [15,21,22], despite the
fact that B-factors are largely influenced by rigid body motions not
represented by NMA [23], they correlate with the essential motions
produced by very long molecular dynamics simulations [24,25], and
with functional conformation changes such as those upon binding of
a physiological ligand, in the sense that often a few low frequency
normal modes almost perfectly reproduce the functional motion
[26–29].

In this work we investigate the relationship between intrinsic pro-
tein motions predicted through ENMs and protein motions observed
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as two different conformations of the same protein determined in
X-ray crystallography experiments or NMR spectroscopy. Linear re-
sponse theory predicts that the response of the protein to a generic
perturbation, for instance ligand binding, is mostly influenced by
low frequency normal modes [30,31]. Based on linear response
theory, we recently proposed a null model of the response to a
“random” perturbation that is independent of the intrinsic dynamics
of the proteins, and introduced the parameter ρ that quantifies signif-
icant deviations from this null model [14]. When this parameter is
large, low frequency normal modes contribute to the conformation
change significantly more than expected based on the null model,
and the energy barrier opposing to the conformation change is
reduced. We observe that in this case only a small number of low
frequency normal modes are sufficient to reproduce the conformation
change. We interpret these observations as hints of a co-evolution
between the functional motion and the intrinsic dynamics of the pro-
tein. Here we perform a large scale study of the relationship between
conformation changes and intrinsic protein dynamics, analyzing all
pairs of crystallized protein structures having the same amino acid
sequence and at least 1 Å of root mean square deviation (RMSD).

The paper is organized as follows. In the first section we review
the torsional network model used in the computations, reporting
computational details omitted in the original publication. In the sec-
ond section we present our null model of conformation change and
the parameter ρ that measures deviations from the null model. In
the third section we present the results of a massive analysis of the
protein data bank.

2. Torsional network model (TNM)

2.1. Degrees of freedom and kinematics

Amolecule composed of n atomswith massesmi can be represent-

ed either through their Cartesian coordinates r
→

i

n o
or, equivalently,

through a set of n−1 bonds connecting pairs of atoms, each charac-
terized by the bond length la, the bond angle θa that it forms with
the previous bond and the torsion angle φa with respect to the
plane of the two previous bonds. In the TNM, only the backbone tor-
sion angles phi (rotation around to the N\Cα bond) and psi (rotation
around the Cα\C bond) are allowed to vary, and the other degrees of
freedom are kept fixed. Our computer program allows us to addition-
ally select the backbone angle omega and side-chain torsion angles as
degrees of freedom, but usually this introduces noise and consider-
ably increases the computation time. We then have to select refer-
ence atoms for computing kinetic energy. These can be only α
carbons, only β carbons, all backbone atoms, all backbone atoms
plus β carbons, or all heavy atoms, which are the best choice, on
which the results presented in this paper are based. Bond lengths
and bond angles are treated as degrees of freedom if the bond is not
a covalent bond, such as the virtual bond connecting two residues
separated by a disordered loop whose coordinates cannot be deter-
mined in the X-ray experiment. When we analyze a conformation
change, we consider for the computation of kinetic energy only
residues that are aligned in the two structures and treat gaps in the
alignment as disordered loops, nevertheless all atoms are used for
computing native interactions (see below). We denote with d the
number of degrees of freedom in the torsional space.

The Jacobian matrix that relates infinitesimal torsional and Carte-
sian displacements is

J
→

ia≡
∂ r→i

∂φa
¼ χia τ

→
a þ v

→
a � r

→
i

� �
ð1Þ

where χia∈{0,1} is one if atom i is upstream of axes a and zero other-
wise (by convention, torsional perturbations are propagated from the

N-terminus to the C-terminus of the protein), × denotes the vector
product and τ

→
a and v

→
a are the translation and the rotation associated

with the degree of freedom a, respectively. If the degree of freedom
represents the torsion around the axis with unit vector e

→
a and origin

s
→

a, it is easy to see that v
→

a ¼ e
→

a and τ
→

a ¼ −e
→

a � s
→

a. If the degree of
freedom represents the bond length, it holds v

→
a ¼0

→
and τ

→
a ¼ e

→
a and

if it represents the bond angle, it holds v
→

a ¼ e
→

a−1 � e
→

a

� �
= e

→
a−1 � e

→
a

��� ���
and τ

→
a ¼ −v

→
a � s

→
a.

The degree of freedom a modifies both the internal degrees of
freedom and the rigid body degrees of freedom. To get rid of the lat-
ter, we have to impose the Eckart conditions [32]

∑
i
mi J

→′

ia ¼ 0;∑
i
mi r

→
i � J

→′

ia ¼ 0 ð2Þ

resulting in J′
→

ia ¼ χia τ
→

a þ v
→

a � r
→

i

� �
þ τ′

→

a þ v′
→

a � r
→

i

� �
, i.e., we

have to apply the rigid body transformations τ′
→

a and v′
→

a that com-
pensate the rigid body motion of the molecule. In the reference

frame in which the center of mass is at the origin, it holds τ
→′

a ¼
− Ma

M τ
→

a þ v
→

a � R
→

a

� �
; I v

→′

a ¼ −Ia v
→′

a−MaR
→

a � τ
→

a, with M ¼ ∑imi;

Ma ¼ ∑iχiami; MaR
→

a ¼ ∑iXiami r
→

i; I is the inertia tensor and Iα is
its restriction to the set having χia=1 [15].

The kinetic energy matrix T in torsion angle space is

Tab ¼ ∑
i
mi

∂ r→i

∂φa

∂ r→i

∂φb
¼ ∑

i
mi J

→′

ia J
→′

ib� ð3Þ

In matrix notation, T= J′tMJ′=KtK, where J′ is represented as a
3n×d matrix, the superscript t indicates matrix transposition, M is
the diagonal mass matrix (not to be confused with the total mass
M=∑ imi), and we introduce the notation Kia ¼ ffiffiffiffiffiffi

mi
p

J′ ia. Taking
advantage of the Eckart conditions, we can simplify the formula as

Tab ¼ Mabτ
→

a⋅τ
→

b þ v
→

a⋅I
ab v

→
b

þMabR
→

ab⋅ τ
→

a � v
→

b þ τ
→

b � v
→

a

� �
−Mτ′

→

a⋅τ
′

→

b−v′
→

a⋅Iv
′

→

b: ð4Þ

Here Mab, R
→

ab and Iab are the mass, center of mass and inertia ten-
sor of the set of atoms that are moved by both degrees of freedom a
and b, i.e., χia=χib=1. We now exploit the fact that the degrees of
freedom are nested, i.e., if axis b is downstream of axis a (which we
denote as b>a), then χib=1 implies χia=1, so that Mab=Mb, unless
a and b represent degrees of freedom of different side-chains, in
which case Mab=0.

2.2. Potential energy

In ENMs, the effective potential energy of the protein is modeled
as a sum of pairwise terms that only runs over native interactions,

V=∑ ijCijv(rij). rij ¼ r
→

i− r
→

j

��� ��� is the distance between interacting

atoms. Cij=1 if the atom i and j are in contact in the native state, 0
otherwise. We use a definition of contacts in which for each pair of
residues the two heavy atoms at shorter distance interact provided
that their distance is smaller than 4.5 Å. The Go model (or, equiva-
lently, the principle of minimum frustration) requires that each inter-
action term has a minimum corresponding to the native interaction
distance rij

0. For small displacements from the equilibrium position

r
→0

i

� 	
, the potential energy can be expanded in Taylor series up to

second order. Since the constant term can be ignored, and the force
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